US 127 Traffic Analyses: I-64 to Westridge

Item No. 5-80212 | US 127 in west Frankfort | March 2023

The Kentucky Transportation Cabinet (KYTC) tasked Qk4 to examine potential short-term traffic impacts along US 127 and adjacent roadways associated with a proposed commercial development northeast of its interchange with I-64 in west Frankfort. The proposed development includes two big box stores, other retail shops, multi-family housing, restaurants, and a gas station. Combined, this totals over 450,000 square feet of commercial space supported by over 2,400 parking spaces. This memo presents a synopsis of existing traffic, the proposed development, and resulting impacts to mobility.

Microsimulation analyses show:

- **Build 1** (\$11.3 million) includes capacity improvements to US 127 and Westridge Drive, plus a new backage road following Vandalay Drive to Limestone Drive. In this scenario, Westridge Drive is close to capacity; small changes in trip distribution assumptions—or additional volume from future developments—have significant impacts on delays and queue lengths.
- **Build 2** (\$10.5 million) includes Build 1 improvements plus a new signalized intersection with US 127 approximately 500 feet south of Westridge Drive, similar to the access configuration proposed by the developer in 2019. While Build 2 offers some operational improvements over Build 1, the closely spaced signalized intersections lead to left turn queues that block thru traffic lanes and spillback beyond upstream signals. The backage road connection is essential for the network to function in the PM peak hour.

Both Build 1 and Build 2 involve roadway improvements beyond existing right-of-way, requiring a public entity to acquire and improve private property. This increases costs and implementation timelines, moreso if federal funding introduces additional environmental compliance requirements.

• Build 3 (\$15.3 million) includes Build 1 improvements plus a new signalized intersection with US 127 approximately 1,100 feet south of the Westridge Drive intersection. The northbound-to-westbound I-64 on-ramp shifts north to become the fourth leg of the new intersection. Build 3e (\$14.4 million) adds the new signalized intersection and shifts two ramps as in Build 3 but carries three northbound US 127 lanes to the Leonardwood/Westridge signal. Dual lefts to a widened Westridge Drive plus a new backage road connection to Limestone Drive are also part of this concept.

The following sections present the analysis.

1 EXISTING HIGHWAY NETWORK

Running through the west side of Frankfort, US 127 is an urban principal arterial, part of the National Highway System (NHS), and a federally designated truck route. It has two 12-foot-wide thru lanes per direction with a non-mountable median, 10-foot paved shoulders, and turn lanes at key intersections. Access control is by permit. The terrain is rolling with grades up to 6% and gentle horizontal curves. The posted speed limit is 45 mph north of the interchange and 55 mph through/south of the interchange.

South to north, there are five intersections along US 127 within the study area:

- US 127 at the eastbound I-64 on ramps (approximate milepoint [MP] 4.25)
- US 127 at the westbound I-64 ramps (approximate MP 4.6)
- US 127 at city-owned Leonardwood Drive and Westridge Drive¹ (MP 4.880), signalized
- US 127 at driveway to private Franklin Square (MP 5.040), signalized
- US 127 at KY 676 (East-West Connector) and city-owned Kings Daughters Drive (MP 5.194), signalized

Signals along the corridor are coordinated and actuated, running 170-second cycles during the PM peak hour. While KYTC collected traffic data along US 127 in 2021, the equipment underestimated volumes. Year 2018 turning movement counts showed 24,600 vehicles traveled US 127 just north of the intersection with Leonardwood Drive/Westridge Drive during 7:00 AM to 7:00 PM, factoring up to over 30,000 vehicles per day (vpd). About 3% of this volume represents trucks. There are strong directional splits during peak hours. Volumes have been trending downward since 2002.

The remaining two study intersections are along KY 676. KY 676 is also an urban principal arterial, part of the National Highway System, and a federally designated truck route. It has two 12-foot thru lanes per direction, 12-foot paved shoulders, and a raised mountable median with turn lanes at key intersections. Access is partially controlled. The posted speed limit is 45 mph. Most of the corridor within the study area has a 5% grade and lies within a large horizontal curve. Both study intersections are signalized: at city-owned Limestone Drive (MP 0.205) and city-owned Collins Lane (MP 0.512). Traffic counts during 2019 show 19,700 vpd on KY 676 between US 127 and Collins Lane, including 3.7% trucks.

¹ Westridge Drive east of Vandalay Drive is a city-owned street. The section between US 127 and Vandalay Drive is privately owned but proposed to transfer to city ownership via local ordinance in May 2023.

1.1 EXISTING SCENARIO: PEAK HOUR TURNING MOVEMENTS

The Existing scenario is built from peak hour turning movement counts conducted in March and October of 2018. Year 2018 was selected to represent the base network to minimize the impact of the Covid pandemic, which had a substantial impact on commuting patterns—particularly for public sector employment prevalent throughout Frankfort. Additionally, the county school system released for the summer before the study was initiated, making potential fresh data collection efforts less representative than at other times of the year. The 2018 volumes include school traffic and avoid any ongoing influence from the pandemic. **Figure 2** presents Existing design hour volumes (DHV) for the AM and PM peak hours at each study intersection.

1.2 EXISTING SCENARIO: PEAK HOUR OPERATIONS

Level of Service (LOS) is a qualitative measure that describes traffic conditions based on measures such as speed and travel time, freedom to maneuver, traffic interruptions, comfort, and convenience. LOS typically represents a driver's perspective of traffic conditions based on perceived congestion. Summarized in **Figure 1**, LOS A is associated with free flow conditions with little or no delay. Conditions at or near capacity typically are associated with LOS E. LOS F represents oversaturated traffic conditions beyond capacity, with low travel speeds and lengthy delays. LOS D is generally considered acceptable for urban areas.

A Vissim microsimulation network was created to model traffic operations within the study area. While any model has limitations—particularly in over capacity congested conditions—the model represents the best tool available to approximate current and future traffic scenarios. To calibrate the model, analysts collected information regarding existing traffic conditions: signal timing plans, queue lengths, operating speeds, etc. Additional technical information about the microsimulation modeling tasks is included in **Appendix A**.

In addition to illustrating existing needs within the study area, the microsimulation model forms a baseline to test how proposed improvements would affect traffic operations. **Figure 3** summarizes traffic operations at study intersections during the AM and PM peaks. As shown, left turns north of the interchange operate at LOS E/F during both peak hours. Left turns to the eastbound on-ramp and right turns from the stop-controlled westbound-to-northbound off-ramp are also over capacity in the AM peak hour with the high volume of US 127 traffic headed towards Frankfort.

Figure 1: Levels of Service

US 127 maximum queue lengths exceed available spacing between signals for southbound flows in the

PM peak hour. However, because of how maximum queue length is calculated within the software, these spillbacks could only last a few seconds. Average queue lengths are shorter—contained within the available spacing between signals.

Figure 2: Existing AM/PM Peak Hour Volumes

Figure 3: Existing AM/PM Peak Hour Level of Service and Delay in Seconds

1.3 FUTURE TRAFFIC TRENDS

Since 2000, traffic volumes along the study section of US 127 and adjacent segments have been trending downward (**Figure 4**) based on KYTC counts. KY 676 has also been steadily declining though I-64 has seen positive growth averaging 1.1% per year.

Kentucky State Data Center population projections for the county through 2040 are likewise projected to decline, peaking with the 2020 Census (51,541).

Forecasts prepared as part of the 2018 *Frankfort Small Urban* 1000 *Area Study*² showed 1.5% growth—less than 400 vpd between 2018 and the 2040 analysis year. Forecasts were developed using the statewide travel demand model, incorporating input from local stakeholders about likely future growth patterns.

Properties abutting US 127 are mostly built out north of the interchange (**Figure 5**) but large vacant tracts to the east are zoned for commercial and residential development. Steep terrain constrains development potential for these parcels, limiting access opportunities and increasing costs.

These factors—coupled with shifting employment patterns emerging from the covid pandemic—led the project team to focus traffic analyses solely on the existing (2018) scenario.

Figure 4: US 127 KYTC Average Daily Traffic Counts since 2000

Figure 5: City Zoning

² Available online through KYTC Division of Planning

2 PROPOSED DEVELOPMENT

Based on the most recent conceptual site plan available (**Appendix B**), the proposed development includes two big box stores, other retail shops, multi-family housing, restaurants, and a gas station. Combined, these total over 450,000 square feet of commercial space supported by over 2,400 parking spaces. No specific tenants have been announced. Site work is ongoing to extend Vandalay Drive south to access the property.

Trip generation rates are derived from the ITE *Trip Generation Manual* (11th Edition) and summarized in **Table 1**. Outparcels are assumed to include 7,500 square feet of retail space unless otherwise noted on the conceptual site plan. For the residential section, 300 apartment units are assumed.

Figure 6: Vandalay Drive Extension, facing South (left) and North (right)

	ITE Use			Daily	Trips	AM	Peak	PM	Peak
Code	Desc.	Size	Unit	In	Out	In	Out	In	Out
820	Shopping Center	467.4	1000 SF	9,033	9,033	253	156	822	891
220	Multi-family Housing	300	Units	999	999	28	88	94	56
944	Gas/Service Station	14	Pumps	1,204	1,204	72	72	97	98
930	Fast Casual Restaurant	2.56	1000 SF	124	124	2	2	18	14
932	Sit-Down Restaurant	9.85	1000 SF	528	528	52	43	54	35
934	Fast Food Restaurant/Drive Thru	2.56	1000 SF	598	598	58	56	44	41
	TOTAL			12,486	12,486	465	417	1,129	1,135

Table 1: Trip Generation Rates

Not all generated trips are new to the roadway network. Some represent trips internal to the development—for example, someone stopping for gas before visiting a store. Others are pass-by traffic—someone already traveling along US 127 who detours into the development before continuing their original route.

2.1 PREVIOUS TRAFFIC STUDIES

Two recent traffic impact studies (TIS) have been completed, associated with proposed new connections to US 127.

OCTOBER 2019 TRAFFIC IMPACT STUDY. An analysis was prepared for both the Paddocks and Landings developments, assuming a new signalized intersection with US 127 (approximate MP 4.77) providing the primary access to both. Trip generation rates were based on a 175,000 square foot shopping center, restaurants, 300 apartment units, and a hotel. The development is assumed to draw 750 new trips during the AM peak hour and 605 new trips in the PM peak hour with 50% coming to/from the south. The report concludes, "Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2022 there will be an impact to the existing highway network, but level of service remains within acceptable limits. Dual left turn lanes for the southbound approach and a northbound right turn lane will be constructed."

The permit application for a new signal was denied. Operational implications for this scenario are discussed further as part of Build 2 analyses below.

NOVEMBER 2021 TRAFFIC IMPACT STUDY. Another TIS was prepared for just the Landings development, accompanying a permit application for a rightin/right-out (RIRO) connection with US 127 (**Figure 7**). Trip generation rates were based on four new restaurants, assumed to draw 151 new trips in the AM peak hour and 125 new trips in the PM peak hour. Again, 50% of the external trips are assumed to travel to/from the south. The report concludes that "the addition of the proposed development and associated traffic will add additional trips to the network, but not substantially to result in the recommendation for any additional lanes or signal modifications by the applicant. The applicant is proposing to construct a new intersection along US 127 that may also divert existing traffic away from the intersection of US 127 at Leonardwood Drive/Westridge Drive. Also, the applicant is proposing to construct an additional northbound lane that would extend the right-turn lane into the adjacent gas station and onto Westridge Drive which would further improve the existing roadway."

The permit application is under review at the time of this analysis. The proximity of the Paddocks development and its impacts on the highway network are a concern though they are not addressed in the 2021 analysis.

Figure 7: Proposed US 127 Access in 2021 Traffic Impact Study

2.2 CONCEPTUAL SLIP RAMP

While it was not addressed in either TIS, the concept plan also presents a slip ramp from the westbound-to-northbound off-ramp connecting to the proposed development. There are some feasibility concerns for the slip ramp shown (**Figure 8**).

- FHWA's *Policy on Access to the Interstate System* requires the proposed access connects to a public road only. While there are a few instances in Kentucky where exceptions have been granted, all predate the 2017 policy.
- KYTC's *Highway Design Manual* specifies that "for interstate and other freeway-type interchanges, full control of access shall extend along the intersecting crossroad a minimum of 100 feet (desirable 300 feet) in urban areas and 300 feet (desirable 600 feet) in rural areas. However, in areas of high traffic volume where the potential for development exists which would create operational or safety problems, longer lengths of access control should be provided."

• The configuration shown aligns the southbound approach opposite the off-ramp, introducing the potential for wrong-way ramp entries.

Build options discussed in **Section 5** present a "modified slip ramp" that functions like the slip ramp proposed by the developer but represents a more standard configuration with fewer safety concerns.

3 IMPACTS TO EXISTING NETWORK

The distribution of generated trips (**Table 1**) was assumed to be comparable to the traffic split accessing the developments along Leonardwood Drive.

Based on third-party origin-destination data, 45% of Paddocks/Landings site traffic is assumed to travel to/from the south (i.e., 15% on I-64 westbound, 10% on I-64 eastbound, and 20% along US 127 further south), 15% to/from the east along KY 676, and 25% to/from farther north along US 127. The remaining 15% filter in from residential areas northwest of the interchange.

Applying these distributions and reductions to account for pass-by trips and internal capture rates to existing traffic (**Figure 2**) results in the "Existing + Development" traffic scenario shown in **Figure 9**.

Figure 8: Slip Ramp in Site Plan

Figure 9: Existing + Development AM/PM Peak Hour Volumes

The Existing + Development scenario assumes all commercial tenants in the Franklin Square vicinity remain in their existing location, included as background traffic—separate from development trips. If any were to relocate to the Paddocks development, it would impact traffic flows. The current assumptions reflect a more conservative (i.e., higher volume) scenario than assuming some existing retail trips shift to become part of the development traffic.

Applying the new external development trips to the existing street network, operations degrade as summarized in Figure 10.

- Each intersection sees minor increases in delay during the AM peak, but none of the intersection LOS or LOS E/F movements differ from the existing scenario. The greatest increase is 30 seconds more delay at the over-capacity westbound off-ramp to north US 127. This increases the maximum modeled queue length from 915 feet to 1,670 feet. The existing ramp provides about 1,860 feet of storage space between the stop bar and gore.
- During the PM peak, the volume of added traffic is much greater, resulting in network-wide gridlock. Each of the signalized intersections operates at LOS E/F with the majority of turning movements failing.

With the increased traffic, US 127 maximum queue lengths exceed available spacing between signals at several locations for northbound flows in the AM peak hour and southbound flows in the PM peak hour. Average queue lengths are shorter—though southbound average queue lengths approaching KY 676 and Franklin Square Drive also spillback beyond the upstream signal in the PM peak.

4 PURPOSE AND NEED

The goal of this planning effort is to assess mobility needs for the US 127 corridor near I-64 in west Frankfort. US 127 provides one of two connections between the city and I-64. The regional medical center and consolidated county school campus rely on it for access, as do numerous businesses and residential neighborhoods. It is a principal arterial, NHS route, and federal truck route, making a high level of reliable mobility a critical component to support local and regional traffic flows.

The US 127/Leonardwood Drive/Westridge Drive intersection is already congested, controls operations for the corridor, and is expected to see a substantial increase in PM peak hour traffic volumes in the near future. Any future projects emerging from this study should maintain US 127 mobility, preserving vehicle throughput for the congested arterial corridor despite increasing volumes. Public roads represent the critical element for traffic flow; that is, mobility for the US 127 arterial and other public streets should be prioritized over mobility on private streets and driveways.

Figure 10: Existing + Development AM/PM Peak Hour LOS and Delay

5 BUILD OPTIONS TO IMPROVE FLOW

Three Build scenarios, with iterations under each, were evaluated to determine how proposed improvements would improve anticipated traffic flows.

5.1 BUILD 1: NO NEW US 127 SIGNALS

The initial Build scenario ("Build 1" shown in **Appendix C**) was developed to streamline anticipated traffic flows, focusing on the state-maintained highway network. Improvements within the existing right-of-way were prioritized to minimize costs and implementation timelines.

The Build 1 scenario includes spot improvements within three distinct geographic areas, in addition to system-wide signal timing adjustments.

IMPROVEMENTS ALONG US 127 TO SOUTH. Along US 127 south of the Leonardwood Drive/Westridge Drive intersection, the following improvements are included in the Build 1 scenario.

• Adjust striping/median to add northbound thru lanes within existing pavement (Figure 11). Just north of the I-64 overpass, lanes shift west so the westbound-to-northbound ramp becomes a free-flow movement instead of stopping. This "modified slip ramp" functions like the slip ramp proposed by the developer but represents a more standard configuration with fewer safety concerns. It also addresses current AM peak queueing issues along the ramp. The proposed widening creates a brief seven-lane section immediately north of the ramp—two southbound thru, median, northbound left to westbound on-ramp, four northbound thru—then carries all four northbound thru lanes to the first signal.

Figure 11: Extra Northbound Thru Lane on US 127

- Any access points along the east side of US 127 become RIRO only. The concrete median barrier is extended accordingly. This assumes a RIRO access road to the new development, similar to the configuration shown in **Figure 7**.
- Loons to facilitate u-turns were considered immediately south of the Leonardwood Drive/Westridge Drive signal for northbound traffic and immediately north of the eastbound on-ramp for southbound traffic.

• To aid in navigation, pavement tattoos or overhead signage on the existing truss could be added.

IMPROVEMENTS AT US 127/WESTRIDGE DRIVE. At the intersection with Leonardwood Drive/Westridge Drive, the following improvements are included in the Build 1 scenario.

- Dual northbound left turn lanes to Leonardwood Drive are extended to increase storage lengths (see **Figure 11**).
- A second US 127 southbound left turn lane to Westridge Drive is added to increase storage space, maximizing lengths within the available median.
- Westridge Drive is reconstructed to provide two receiving (eastbound) lanes. Approaching US 127, three westbound lanes serve left, shared left/thru, and right turn movements. Excluding the sidewalk, this increases the pavement width from 60 feet today to 66 feet proposed. The entire length between US 127 and Vandalay Drive becomes a divided section, with driveways on either side operating as RIROs. It should be noted that Westridge Drive west of Vandalay Drive is privately owned (Figure 12) but proposed to transfer to city ownership in May 2023.
- Adjusting the signal phasing to run east/west approaches concurrently was considered but rejected as it degrades performance.
- A multi-lane roundabout was considered but rejected as it cannot provide adequate capacity within the available right-of-way.

NEW BACKAGE ROAD. Vandalay Drive currently provides a backage road connection from Franklin Square south. The Build 1 scenario assumes a two to three lane connector from the Paddocks development to KY 676 at Limestone Drive, with a roundabout at Westridge Drive (**Figure 13**). The roundabout facilitates u-turns for Westridge Drive.

Figure 12: PVA Parcel Ownership

Figure 13: Proposed Westridge/Vandalay Roundabout

At the north end of the backage road, connections to Limestone Drive and/or Collins Lane were considered. A connection opposite Collins Lane (**Figure 14**) involves steeper terrain and would likely impact the transmission line, increasing costs. Limestone Drive is city-owned and provides a convenient cut-through from US 127, helping to divert some of the heavy southbound US 127 left-turn traffic intended for the Paddocks/Landings development.

5.2 BUILD 2: NEW SIGNAL PER 2019 TIS

Figure 14: View South from Collins Ln

For comparison, a new signalized intersection at US 127 and the proposed Landings property access road was also analyzed—approximately 500 feet south of the Leonardwood Drive/Westridge Drive signal. The new westbound approach is assumed to carry four lanes—westbound right, westbound left, plus two receiving—and dual southbound left turn bays as proposed in the 2019 Traffic Impact

Study. The build traffic volumes from this 2022 effort are applied, higher than the assumed trips in the 2019 TIS. As shown in **Appendix D**, Build 2 contains a new signalized intersection added into the Build 1 scenario, with two exceptions:

- The longer northbound left turn storage lanes to Leonardwood Drive disappear due to the proximity of the new signal.
- The westbound off-ramp remains a free-flow movement but US 127 carries only three northbound thru lanes.

Two variations on this scenario were also evaluated, also shown in **Appendix D**. Build 2a includes the new Landings signal and US 127 modifications from Build 2 but eliminates improvements along Westridge or Vandalay drives. Without additional access points distributed along the backage road, all development traffic is routed through the Westridge and new southern signalized intersections. Build 2b includes the new Landings signal, US 127 modifications from Build 2, and the backage road connection along Vandalay Drive. It eliminates improvements along Westridge Drive, keeping a single southbound left turn lane and a single receiving lane.

5.3 BUILD 3: NEW SIGNAL AT WESTBOUND ON-RAMP

Build 3 was developed to provide an extra access point to the Paddocks/Landings development, shifting some of the westbound left turns away from the already congested US 127/Leonardwood Drive/Westridge Drive intersection. Shown in **Appendix E**, Build 3 includes the following elements:

- Four northbound thru lanes on US 127, similar to capacity improvements shown in Build 1. The westbound-to-northbound off-ramp is a free-flow movement but is reconstructed approximately 300 feet south of its current location.
- The westbound on-ramp is reconstructed approximately 180 feet north of its existing location. The on-ramp ties to US 127 at a new signalized intersection near MP 4.65, with a fourth approach providing access to the property. It should be noted that the Build 3 conceptual design does

not provide a southbound left turn option to access the development from this intersection; trips from the north are assumed to have turned left at one of the upstream signalized intersections. Fewer phases should improve the efficiency of signal timing.

• Other improvements to Westridge Drive, US 127 turn bays, and the Vandalay Drive backage road connection are identical to Build 1.

Build 3 would require coordination with the Federal Highways Administration (FHWA) and preparation of an *Interchange Modification Report* (IMR) for proposed changes to the interchange.

Five variations on this scenario were also evaluated, also shown in **Appendix E**. Build 3a excludes improvements to Westridge Drive and the backage road, including only modifications to US 127 and the interchange. Build 3b excludes Westridge Drive improvements but includes the backage road. Build 3c is identical to Build 3 but adds the southbound left turn bay at the new signal alongside Westridge drive and backage road improvements. Build 3d is identical to Build 3c but removes the RIRO connection to US 127 at the Landings. Build 3e is identical to Build 3d but merges the eastbound-to-northbound loop ramp south of the westbound-to-northbound off-ramp lane add, carrying three northbound thru lanes to the Leonardwood/Westridge signal.

6 BUILD TRAFFIC OPERATIONS

Each Build scenario was coded into the microsimulation network to measure performance metrics between scenarios. With lower volumes entering the development and less thru traffic headed towards I-64 during the AM peak, PM operations demonstrate more impacts from the development traffic. **Table 2** contains a side-by-side summary of intersection-level delay between Build scenarios during the PM peak hour. **Table 3** compares travel times along US 127 through the study area between scenarios. The following subsections provide more detailed discussions of each scenario, with movement-by-movement metrics at each study intersection in **Appendix F**.

Intersection	Existing	Existing + Developed	Build 1	Build 2	Build 3e
WB Off-Ramp	WBR: C (20)	WBR: D (35)	Free-flow ramp	Free-flow ramp	Free-flow ramp
New US 127 Signal	-	-	-	B (19)	C (34)
US 127 at Leonardwood Dr/Westridge Dr	D (45)	F (96)	E (57)	D (50)	D (49)
US 127 at Franklin Square	B (14)	F (97)	C (26)	C (25)	B (20)
US 127 at KY 676	D (48)	F (141)	E (56)	E (57)	E (67)
KY 676 at Limestone Dr	C (35)	F (99)	D (51)	D (51)	E (58)
KY 676 at Collins Ln	B (20)	E (64)	B (17)	B (16)	B (18)

Table 2: PM Peak LOS and Delay (seconds) at Study Intersections

Table 3: US 127 Travel Times in Seconds through Study Area

Scenario	AM		PM	
	NB	SB	NB	SB
Existing	157	166	197	157
Existing + Developed	343	180	181	424
Build 1 (Section 4)	142	163	197	166
Build 2 (Landings Signal)	146	162	205	163
Build 2a (No Backage, No Westridge)	157	165	197	401
Build 2b (No Westridge)	149	163	198	180
Build 3 (WB Ramp Signal)	157	170	208	171
Build 3a (No Backage, No Westridge)	151	169	219	183
Build 3b (No Westridge)	149	164	201	169
Build 3c (Build 3 + SBL at new signal)	151	169	199	169
Build 3d (Build 3c, no RIRO)	151	169	195	171
Build 3e (Build 3d with loop merge)	173	167	206	167

Note: Best performers shaded green; others within 5 seconds shaded lighter green

6.1 BUILD 1 TRAFFIC OPERATIONS

Build 1 includes extra northbound capacity on US 127 (no new signals), added capacity for Westridge Drive, and a new backage connection. As shown in **Figure 15**, operations degrade versus Existing for the PM peak hour with the increased traffic volumes; individual turn movements operate at LOS F at several study intersections but the overall intersections are not over capacity.

While Build 1 provides among the lowest travel times along US 127 of the build scenarios, maximum queue lengths for peak directional flows continue to exceed available spacing between signals but average queue lengths do not.

Routing of development traffic has been distributed through the existing street network, with some trips cutting across on Limestone Drive or Franklin Square. Because it is close to capacity, Westridge Drive is particularly sensitive to distribution assumptions. Even relatively minor changes in the distribution result in large changes for westbound queue lengths at the US 127 signal backing up into and beyond the roundabout in some cases.

Projections show 470 vehicles leaving the Paddocks/Landings site turning left onto southbound US 127 in the PM peak hour. With limited new connections to the south, most of this traffic is funneled through the already congested US 127/Leonardwood Drive/Westridge Drive signal—backing up queues along Westridge Drive or taking green time from US 127 thru movements, which increases delay for arterial moves. Should other properties in the vicinity develop, the proposed build configuration would likely not be sufficient.

Figure 15: Build 1 AM/PM Peak Hour LOS and Delay

6.2 **BUILD 2 TRAFFIC OPERATIONS**

Build 2 includes the same Westridge Drive and backage road improvements as Build 1 plus adds a new signalized intersection along US 127 approximately 500 feet south of Westridge Drive. From an operations perspective, delay at the US 127/Leonardwood Drive/Westridge Drive signal is reduced compared to Build 1 as some of southbound and westbound left turn traffic shifts to the new intersection. **Figure 17** on the following page highlights LOS and delay for turn movements at study intersections during both peak hours.

As in previous scenarios, maximum queue lengths for peak directional flows continue to exceed available spacing between signals but average queue lengths do not. US 127 corridor travel times are among the best of the build options considered.

However, queues for left turning traffic spill back beyond the available turn bays for northbound lefts to Leonardwood Drive and southbound lefts into the Landings/Paddocks development, blocking thru lanes. **Figure 16** contains a screenshot from the microsimulation model. Both northbound and southbound queues regularly extend beyond the available 200-foot left turn storage lengths during the PM peak hour, blocking US 127 thru lanes. Maximum queues are over 600 feet, spilling back beyond the upstream signal. During the AM peak, northbound queues exceed capacity but with lower volumes entering the development and less thru traffic headed towards I-64, southbound queues are minimal.

Introducing a new signalized intersection is likely to increase crash rates along US 127, especially rear end crashes as motorists face stop-and-go traffic, grow impatient with lengthy delays, and may not be able to see around queued vehicles when completing left-turn maneuvers. Pulling stop bars back to improve visibility further reduces queue storage space, exacerbating the problem.

Figure 16: PM Peak Queuing between Closely Spaced Signals

Figure 17: Build 2 AM/PM Peak Hour LOS and Delay

At the new signal, southbound and westbound left turns operate at LOS E/F in both peak hours. Queue lengths along the new westbound approach between the signal and adjacent T-intersection are a concern; increased storage space between these intersections would be beneficial but would impact the conceptual site layout.

While KRS 177.315 establishes 600 feet spacing in urban areas as the minimum between access points, per the 2012 KYTC *Traffic Impact Study Guidelines*, recommended signal spacing along urban arterials is 2,400 feet.

BUILD 2A TRAFFIC OPERATIONS. Build 2a includes the new Landings signal and US 127 modifications from Build 2 but eliminates improvements along Westridge or Vandalay drives. This configuration does not provide adequate capacity for PM peak hour operations; several signalized intersections are over capacity and travel times along US 127 more than double.

- With lower volumes entering the development and less thru traffic headed towards I-64 during the AM peak, the Build 2a network operates as well as Build 2 except for a minor increase in delay at US 127/KY 676, dropping the overall intersection from LOS C to D.
- With heavier traffic flows and turn movements during the PM peak, Build 2a LOS degrades from Build 2 by at least one letter grade at every study intersection. US 127 intersections with Leonardwood/Westridge and KY 676/Kings Daughters operate at LOS F. Southbound lefts onto Westridge Drive operate at LOS F; maximum queues spill back beyond the upstream signal at Franklin Square. The new signalized intersection operates at LOS D but both left turn movements are LOS F and queue lengths for the new westbound approach exceed 1,500 feet.

BUILD 2B TRAFFIC OPERATIONS. Build 2b includes the new Landings signal, US 127 modifications from Build 2, and the backage road connection along Vandalay Drive but eliminates improvements along Westridge Drive. Operationally, Build 2b lies between Build 2 and Build 2a. No intersections reach LOS F but Build 2b offers no travel time improvements compared to Build 1.

During the PM peak, US 127 intersections with Leonardwood/Westridge and KY 676/Kings Daughters operate at LOS E. Maximum northbound and southbound queue lengths between Leonardwood/Westridge and the new Paddocks/Landings signals approach but do not exceed the 500-foot spacing available. Left turns at the new signal operate at LOS E with maximum queue lengths on the new westbound approach less than 500 feet.

6.3 BUILD 3 TRAFFIC OPERATIONS

Build 3 includes the same Westridge Drive and backage road improvements as Build 1 plus adds a new signalized intersection along US 127 approximately 1,100 feet south of Westridge Drive, opposite the westbound on-ramp, that does not provide a southbound left turn option. Build 3 provides similar operations at study intersections as Build 2 but without the queuing concerns associated with the closely spaced Westridge and new access point signals. **Figure 18** on the following page highlights LOS and delay for turn movements at study intersections during both peak hours.

Figure 18: Build 3 AM/PM Peak Hour LOS and Delay

As in previous scenarios, maximum queue lengths for peak directional flows continue to exceed available spacing between some existing signals northbound at Franklin Square in the AM peak and southbound at Leondardwood Drive and KY 676 in the PM peak. Average queue lengths do not. US 127 corridor travel times are higher than for Build 1 or Build 2.

The US 127/Leonardwood Drive/Westridge Drive signal operates at LOS E in the PM peak hour with northbound and southbound left turns from US 127 and all moves from the eastbound Leonardwood Drive approach over capacity. (Discussed below, variations on Build 3 add a southbound left turn lane at the new signal to address these concerns.)

The new signal at the on-ramp operates at LOS C in the PM peak hour but northbound lefts and thru/left turns from the new westbound property access point are at LOS E/F. Maximum queue lengths for the westbound approach are 460 feet. While the internal roadway network is up to the developer, concept sketches in **Appendix E** show a representative roundabout near the western tip of the development concept, roughly 350 feet east of US 127.

BUILD 3A TRAFFIC OPERATIONS. Build 3a includes the new signal at the shifted on-ramp and US 127 modifications from Build 3 but eliminates improvements along Westridge Drive or the backage road. It also adds dual southbound left turn bays at the new signal with 500+ feet of storage each. This scenario reduces delay at the US 127/Leonardwood Drive/Westridge Drive signal by distributing southbound turning traffic between two intersections instead of just the Westridge Drive signal. As in previous scenarios, maximum queue lengths for peak directional flows continue to exceed available spacing between some existing signals though average queue lengths do not.

The US 127/Leonardwood Drive/Westridge Drive signal operates at LOS D in the PM peak hour.

The new signal at the on-ramp operates at LOS D with westbound thru and left moves (exiting the development) at LOS F with queues over 1,650 feet.

As shown in **Figure 19**, Build 3a demonstrates that improvements contained entirely within existing right-of-way and the proposed development property can provide adequate network capacity for anticipated traffic flows. Build 3a is not a perfect solution: US 127/KY 676 and KY 676/Limestone Drive signals operate at LOS E in the PM peak and US 127 travel times are among the highest of all build concepts aside from Build 2a. But this scenario offers a lower cost, shorter term solution than other options. And, if combined with future improvements to Westridge Drive and the backage road (i.e., as in Build 3c), it may provide additional long-term redundancy benefits, especially if other vacant properties in the vicinity develop.

Figure 19: Build 3a AM/PM Peak Hour LOS and Delay

BUILD 3B TRAFFIC OPERATIONS. Build 3b includes the new signal at the on-ramp with the southbound left bays, US 127 modifications from Build 3, and the backage road but eliminates improvements along Westridge Drive. Operationally, Build 3b lies between Build 3 and Build 3a. No intersections reach LOS F but US 127/KY 676 is at LOS E in the PM peak. Build 3b offers slightly higher travel times that top performers Build 1/Build 2.

BUILD 3C TRAFFIC OPERATIONS. Build 3c starts with 3a—entirely within existing right-of-way and the proposed development property—then adds the improvements to Westridge Drive and the backage road. It shows minor improvements in delay over options 3a/3b at both the US 127/Leonardwood Drive/Westridge Drive and new signals. US 127 travel times are slightly higher than for Build 3b. As in previous scenarios, maximum queue lengths for peak directional flows continue to exceed available spacing between some existing signals but average queues do not. Southbound left turns onto Westridge Drive remain at LOS F in both peak hours but with less delay than in Build 3. Only the US 127/KY 676 intersection operates at LOS E in the PM peak hour.

For the new signal, westbound thru/left moves remain at LOS E/F but maximum queue lengths drop from 1650+ feet in Build 3a to 550 feet.

BUILD 3D TRAFFIC OPERATIONS. Build 3d matches Build 3c but loses the connection between the Landings RIRO and US 127. Little traffic was assigned to the Landings RIRO in other Build 3 scenarios, leading to minimal differences in microsimulation results. Operationally, Build 3d is within 5 seconds delay at all study area intersections with no changes in LOS.

BUILD 3E TRAFFIC OPERATIONS. Build 3e starts with Build 3c but loses the connection between the Landings RIRO and US 127 and merges the eastbound-to-northbound loop ramp before the westbound-to-northbound off-ramp so only three northbound thru lanes are carried to the Leonardwood/Westridge signal. Shown in **Figure 20**, LOS at each study intersection along US 127 matches LOS in Build 3c.

The new signal operates at LOS C in the PM peak. Westbound thru/left turns exiting the development operate at LOS F/E respectively, with maximum queue lengths of 1,230 feet backing up into the development. The US 127/Leonardwood Drive/Westridge Drive signal operates at LOS D in the PM peak, with left turn movements at LOS E/F. Maximum queues for both southbound lefts at the new signal and northbound lefts to Leonardwood Drive fit within available turn lane storage lengths, removing turning traffic from thru lanes.

Figure 20: Build 3e AM/PM Peak Hour LOS and Delay

6.4 FHWA CONSIDERATIONS FOR BUILD 3E

Build 3e was analyzed in more detail to document key operational characteristics for the westbound-to-northbound off-ramp and access control along US 127. Shown in **Figure 21**, Build 3e realigns the westbound-to-northbound off-ramp, decreasing the length, but converts the existing stop-controlled intersection with US 127 to a free-flow movement with an added third northbound lane on US 127.

Figure 21: Build 3e at I-64 Westbound Ramps

Today, the ramp is 1,910 feet to the gore. During the AM peak hour, it carries 550 vehicles per hour (vph) compared to 2,360 vph on adjacent I-64 eastbound thru lanes. The westbound diverge segment operates at LOS C with maximum queue lengths of 915 feet backing up onto the ramp per the Vissim microsimulation model.

In Build 3e, the proposed ramp is 1,730 feet to the gore. During the AM peak hour, it carries 579 vehicles per hour (vph) compared to 2,360 vph on adjacent I-64 eastbound thru lanes. The westbound diverge segment operates at LOS C with no queue length approaching US 127 as there is no stop or merge for exiting traffic.

Figure 22 presents a visual summary of vehicular densities by lane during the PM peak hour for the No-Build (bottom) and proposed Build 3e (top) scenarios. As shown, densities increase approaching signals, represented by the darker red shading. Adding a third lane in Build 3e spaces out traffic, introducing more opportunities to change lanes in addition to increasing the available length to complete these maneuvers versus the No-Build scenario.

Figure 22: Northbound US 127 Density by Lane

The highest densities approaching the Leonardwood Drive/Westridge Drive stop bar in the No-Build scenario are 110-123 passenger cars per lane per hour (pcplph), highest in the inside lane adjacent to the left turn bays. In Build 3e, the corresponding densities are 91-149 pcplph, highest in the middle lane. The 700 feet just north of the proposed new signal in Build 3e average 13.5 pcplph compared to 16.8 pcplph in the No-Build for the same length.

While the concept provides an estimated 500 feet between the westbound-to-northbound off-ramp tie to US 127 and the northbound stop bar at the new signal, the horizontal curvature of US 127 versus the proposed ramp lead to opposing superelevations. Planning-level drawings show 3% superelevation along US 127 versus -8% superelevation for the ramp, The ramp's superelevation runoff and runout will add approximately 200 feet from the end of the horizontal curve before the cross section is flush with US 127. This effectively reduces the available weave distance between the off-ramp and downstream left turns.

Access control limits are shown in **Figure 23** for Build 3e. Northbound, access control limits drop from 920 feet existing to 550 feet proposed. Southbound, there is no change between the existing and proposed conditions.

Figure 23: Access Control Spacing

It should be noted that concepts presented herein have been developed at a planning level of detail. Additional design efforts—preliminary and final will refine the preferred concept, including a Geometric Layout Sheet and any necessary environmental clearances.

7 COST ESTIMATES

Planning-level cost estimates³ were developed using 2021 KYTC average unit bid prices, estimating quantities for pavement and concrete medians, curbs, and sidewalks. Analysts then applied a 1.6 factor to reflect other construction costs and added 30% for contingencies. Including existing privately owned roads, right-of-way was estimated at \$500,000 per acre. Costs for Build 1 are shown in **Table 4**, also breaking out costs for improvements by section.

Cost Estimate	Total Costs	Design	Right-of-Way	Utilities	Construction
Full Build 1 Concept	\$11.3M	\$1.0M	\$5.5M	\$0.7M	\$4.1M
US 127	\$1.8M	\$0.2M	-	-	\$1.6M
Westridge Drive	\$3.8M	\$0.4M	\$2.3M	\$0.3M	\$0.8M
Backage Road	\$4.4M	\$0.3M	\$2.6M	\$0.3M	\$1.2M
Within Development	\$1.3M	\$0.1M	\$0.6M	\$0.1M	\$0.5M

Build 2 costs are summarized in **Table 5**. Build 2 is estimated at \$10.5 million, versus \$2.3 million for Build 2a or \$6.7 million for Build 2b.

Table 5: Planning-Level Cost Estimates for Build 2

Cost Estimate	Total Costs	Design	Right-of-Way	Utilities	Construction
Full Build 2 Concept	\$10.5M	\$0.9M	\$5.5M	\$0.7M	\$3.4M
US 127	\$1.0M	\$0.1M	-	-	\$0.9M
Westridge Drive	\$3.8M	\$0.4M	\$2.3M	\$0.3M	\$0.8M
Backage Road	\$2.2M	\$0.1M	\$1.3M	\$0.2M	\$0.6M
Within Development	\$3.5M	\$0.3M	\$1.9M	\$0.2M	\$1.1M

³ Planning-level estimates are conservatively high, including initial assumptions regarding private ownership of Westridge and Vandalay drives. Updated costs for the preferred concept will be provided as design phases advance.

And Build 3 costs are summarized in **Table 6**. Build 3 is estimated at \$15.3 million. Other variations include \$8.8 million for Build 3a, \$14.2 million for Build 3b, \$15.5 million for Build 3c, \$15.4 million for Build 3d, and \$14.4 million for Build 3e. For reference, planning-level costs by phase for Build 3e are included in **Table 7**. Build 3e without improvements along Westridge Drive or Vandalay Drive north of the development are estimated at \$8.2 million.

Cost Estimate	Total Costs	Design	Right-of-Way	Utilities	Construction
Full Build 3 Concept	\$15.3M	\$1.4M	\$5.5M	\$0.9M	\$7.5M
US 127/I-64 Ramps	\$4.7M	\$0.5M	-	-	\$4.2M
Westridge Drive	\$3.8M	\$0.4M	\$2.3M	\$0.3M	\$0.8M
Backage Road	\$2.2M	\$0.1M	\$1.3M	\$0.2M	\$0.6M
Within Development	\$4.6M	\$0.4M	\$1.9M	\$0.4M	\$1.9M

Table 6: Planning-Level Cost Estimates for Build 3

Table 7: Planning Level Cost Estimate for Build 3e

Cost Estimate	US 127/Ramps	Other Routes
Design	\$0.5M	\$0.9M
Right-of-Way	-	\$5.2M
Utilities	<\$0.1M	\$0.7M
Construction	\$3.9M	\$3.2M
Total	\$4.4M	\$10.0M

Succinct project summary sheets for Build concepts are included in Appendix G.

KYTC subject matter experts independently reviewed Build 3a to assess any fatal flaw concerns. A meeting summary and synopsis of design considerations are included as **Appendix H**.

Appendix A: Traffic Microsimulation Technical Report

This technical report summarizes the methodologies to develop the microsimulation network for the 5-80212 analyses. Due to the imminent construction timeline for the developments, all analyses are based on "current" year traffic with no future forecasting component. The following sections document key tasks and model assumptions.

DATA COLLECTION

Numerous data points were collected to facilitate model development:

- Traffic counts were compiled from turning movement counts conducted for KYTC's 2019 *Frankfort Small Urban Area Study* and the 2019 *Traffic Impact Study* for the Paddocks/Landings developments. Both sets of turning movement counts were collected during 2018: March and October, respectively. Year 2018 was selected to represent the base network as data was readily available for most study intersection; it also served to minimize the impact of the covid pandemic, which had a substantial impact on local commuting patterns. Corridor volumes between both data sets were consistent; raw turning movements are included as **Attachment A1**.
- Peak hour turning movement counts were also conducted in June 2022 at the US 60 intersections with Jett Boulevard and Canty Way in east Frankfort. These intersections provide access to the Parkside mixed use development, similar in size and composition to the proposed Landings/Paddocks development.
- Existing signal timing plans at study intersections were provided by KYTC District 5.
- Fleet mix distributions (i.e., cars versus trucks) were derived from 2018 traffic counts and statewide averages.
- Peak hour travel times were collected via GPS datalogger during June 2022. While these are not an exact baseline for 2018 operations, they provide a comparison point. HERE travel time data for both KY 676 and US 127 were also queried and show similar trends. Both data sets are mapped in **Figure A-1**.

Figure A-1: Travel Speed Comparison

- StreetLight data provided origin-destination flows between external network links. Results were based on weekday (Tuesday through Thursday) trends observed during four months of 2019 data (March, April, September, October)—periods when school was in session and seasonal disruptions (e.g. snow storms, holidays) were minimal. Distributions were reported for 24-hour, AM peak (7-9 AM), and PM peak (4-6 PM) periods. A map of gateway locations and corresponding tables for the AM and PM peaks are included as Attachment A2.
- Measures of 2018 queue lengths were not available; however, anecdotal input from commuters familiar with the corridor pre- and post-covid was incorporated.

CALIBRATION OF EXISTING NETWORK

Microsimulation models using the Vissim software package² were developed for the AM and PM peak hours. The AM peak simulated operations 7:15-8:15 AM; the PM peak simulated operations 4:45-5:45 PM. The existing scenario was calibrated using collected data defined in the previous section to ensure models replicate existing performance. Default variables were adjusted as appropriate to reflect Kentucky driver behaviors as discussed below. Once calibrated, development traffic was added and build scenarios were created to test how different improvements impacted traffic operations. Results are presented in the main report for the study.

Vehicle volumes at network entry nodes were input for 15-minute intervals. Peak hour volumes at each intersection were compared between the model network and existing counts; as shown in **Table A-1**, all intersections calibrated to within 10% of the observed volumes.

Vehicle compositions were calculated and input for each entry node from classification data in the traffic counts. Vehicle fleet compositions for cars and heavy vehicles were also assigned by KYTC standards.

 Table A-2 summarizes breakdowns for both cars and heavy vehicles.

Table A-1: Model vs Design Hour Volume Comparison

Intersection	AM Comparison	PM Comparison
US 127 & I64 EB Ramps	-1.3%	-4.2%
US 127 & I64 WB Ramps	-3.9%	-4.4%
US 127 & Leonardwood/Westridge	2.7%	8.6%
US 127 & Franklin Square	0.5%	-1.1%
US 127 & KY 676	9.0%	4.7%
KY 676 & Limestone	-5.8%	2.9%
KY 676 & Collins	-8.7%	-4.5%

² PTV Vissim 2022 (SP 01) [236021]

Car Type	Percentage	Heavy Vehicle Type	Percentage
Honda Accord	12.9%	AASHTO WB-40	10.5%
Nissan Altima	6.0%	AASHTO WB-50	48.0%
Nissan Quest	6.4%	AASHTO WB-65	4.5%
Plymouth Voyager	5.5%	AASHTO WB-67	4.5%
Toyota Avensis	13.5%	Flatbed	5.0%
Ford Explorer	10.6%	EU 04	27.5%
GMC Yukon	5.0%		
Jeep Grand Cherokee	5.8%		
Ford F150	19.2%		
Chevrolet Silverado	15.1%		

Table A-2: Vehicle Distributions for Cars and Trucks

KYTC's default desired speed distributions were used, following the 45 mph Urban Arterial curve, with travel speeds distributed between 33 and 57 mph.

A virtual meeting was held with KYTC Modal Group on June 16, 2022. After viewing the calibration metrics (summarized herein) and simulation videos, attendees agreed both networks appear reasonable with an adjustment to the traffic control for right turns from Leonardwood Drive.
Appendix B: Conceptual Site Plan, June 2022

PADDOCKS OF FRANKFORT CONCEPT PLAN

Appendix C: Build 1 Scenario Concept Sketch

Sn.

A TEMP TO A

24

Appendix D: Concept Sketches for Build 2 Scenarios

A LEWIS CO. L

Build 2a

जा

a lens

Build 2b

S.

Contraction of the second

Parts .

ETH IN

Appendix E: Concept Sketches for Build 3 Scenarios

SI.

Contraction of the local division of the loc

四日

A STATE

ETH IN

Build 3a

Contract of the second

Build 3b

ST.

ISNN -----

Build 3c

(); 91

I ITAN AT A I

Build 3d

Build 3e

International State

Appendix F: Vissim Output Tables

Existing + Developed Scenario Build 1 Scenario

Build 2 Scenario Full Build + Landings Signal

Avg Queue

Max

Queue LOS

LOS_B

LOS_F

LOS_A

LOS_A

LOS_A

LOS A

LOS_C

LOS_C

LOS_B

LOS_F

LOS_C

LOS_E

LOS_B

LOS_E

LOS_C

LOS_D

LOS_A

LOS_E

LOS_E

LOS_B

LOS_A

LOS_E

LOS_A

LOS_A

LOS_A

LOS F

LOS_A

LOS_E

LOS_F

LOS_E

LOS_D

LOS_F

LOS_C

LOS_C

LOS_E

LOS_B

LOS_A

LOS A

LOS_F

LOS_A

LOS_E

LOS_E

LOS_E

LOS_C

413 LOS_F

Delay

Build 2a Scenario ndings Signal No Backago/No Wostridge

Landings S	ignai, No Ba	аскаge/No	westridge
Avg	Max		
Queue	Queue	LOS	Delay
50	749	LOS_A	10
150	749	LOS_F	52
0	47	LOS_A	1
0	0	LOS_A	1
1	47	LOS_A	5
0	0	LOS_A	1
63	613	LOS_C	33
75	462	LOS_C	26
30	270	LOS_B	11
67	219	LOS_F	109
156	613	LOS C	26
56	201	LOS E	75
156	613	LOS B	19
37	197	LOS F	80
62	240	LOS C	31
37	197	LOS D	42
13	143	LOS A	8
68	269	LOS E	73
68	269	LOS F	72
15	487	LOS A	9
34	368	105 A	9
1	22	LOS F	88
0	0	LOS A	
22	487	LOS A	5
0	0	105 A	-
3	41	LOS F	105
31	119	LOS A	8
22	99	LOS E	60
22	99	LOS F	91
18	68	LOS E	70
18	85	LOS D	44
18	68	LOS F	89
80	889	LOS D	35
60	520	LOS C	28
20	87	LOS E	80
29	286	LOS B	10
43	889	LOS A	8
6	166	105 A	5
88	316	105 F	103
13	135		8
69	337	LOS F	76
39	149	105 F	63
406	678	105_E	121
400 R	172		16
172	651		20
1/3	031	LO3_F	02

AM Peak Hour	Existing Scenario					
Movement	Avg	Max	105	Delav		
1: US 127 & EB On-Ramp	55	797	LOS B	11		
SB Left	166	797	LOS F	60		
: US 127 & WB Ramps	84	915	LOS B	11		
NB Thru	0	0	LOS A	3		
NB Left	0	21	LOS A	3		
WB Right	337	915	LOS F	52		
: US 127 & Leonardwood	117	1656	LOS D	40		
SB Thru	79	371	LOS C	30		
SB Right	17	313	LOS B	10		
SB Left	54	259	LOS E	78		
NB Thru	492	1655	LOS C	33		
NB Left	392	1656	LOS F	94		
NB Right	3	109	LOS C	20		
WB Left	18	96	LOS F	80		
WB Right	46	139	LOS B	15		
WB Thru	18	96	LOS D	46		
EB Right	11	126	LOS A	9		
EB Left	60	275	LOS E	75		
EB Thru	60	275	LOS E	74		
US 127 & Franklin Square	22	699	LOS B	13		
SB Thru	29	306	105 A	9		
SBleft	2	47	105 F	76		
SB Right	0	0		70		
NB Thru	49	699	105 A	9		
NB Right	0	0	105 4	5		
NBleft	2	22	105 F	127		
FB Right	37	139		9		
FRIeft	26	119	105 F	72		
EB Thru	26	119	105 E	95		
WBleft	33	120	105 F	74		
WB Right	39	137	LOS B	12		
WB Thru	33	120	LOS F	76		
US 127 & KY 676	64	894	LOS D	38		
SB Thru	55	419	LOS C	31		
SBLeft	19	120	105 F	70		
SB Right	30	452	LOS B	11		
NB Thru	26	642	LOS A	8		
NB Right	3	116	105 A	5		
NBleft	269	894	105 F	186		
FR Right	13	151		200		
FRIeft	67	305	105 F	72		
FR Thru	35	146	105_E	57		
WBLeft	93	645	105_E	71		
WB Right	10	216		20		
	17	510 510		20		
vvb illiu	144	035	LO3_F	01 10		

Avg	Max		
Queue	Queue	LOS	Delay
83	829	LOS_C	18
231	829	LOS_F	75
323	1670	LOS_F	58
429	1212	LOS_F	81
0	39	LOS_C	24
863	1670	LOS_F	82
265	1680	LOS_D	52
92	348	LOS_D	35
16	218	LOS_A	9
107	367	LOS_F	84
1109	1680	LOS_D	49
1104	1680	LOS_F	124
30	1627	LOS_C	27
41	159	LOS_E	66
74	203	LOS_B	19
41	159	LOS_D	36
12	142	LOS_A	9
65	218	LOS_E	74
65	218	LOS_E	73
27	897	LOS_B	18
37	314	LOS_B	11
2	23	LOS_E	61
0	0	LOS_A	
96	897	LOS_B	17
0	0	LOS_A	
3	23	LOS_F	120
37	139	LOS_A	10
26	119	LOS_E	75
26	119	LOS_F	96
33	120	LOS_E	74
39	137	LOS_B	15
33	120	LOS_E	76
82	915	LOS_D	44
62	363	LOS_C	33
23	124	LOS_F	86
31	351	LOS_B	12
34	492	LOS_B	13
5	132	LOS_A	6
450	915	LOS_F	224
12	122	LOS_A	7
69	313	LOS_E	74
40	145	LOS_E	64
111	660	LOS_E	74
14	170	LOS_B	15
132	476	LOS_E	80
	-		

Avg	Max		
Oueue	Oueue	105	Delav
72	735	LOS B	13
215	735	LOS F	70
0	47	LOS A	1
0	0	LOS A	1
1	47	LOS A	5
0	0	LOS A	1
66	777	LOS D	36
66	367	LOS C	28
33	311	LOS_B	12
20	69	LOS_F	102
184	777	LOS_C	31
52	181	LOS_E	71
184	777	LOS_B	16
60	436	LOS_F	84
89	480	LOS_D	49
60	436	LOS_D	42
14	163	LOS_A	9
79	311	LOS_E	78
79	311	LOS_F	82
28	903	LOS_B	15
20	264	LOS_A	7
28	144	LOS_F	87
0	0	LOS_A	
116	903	LOS_B	12
0	0	LOS_A	
2	23	LOS_F	115
33	131	LOS_A	8
23	111	LOS_E	60
23	111	LOS_F	92
27	95	LOS_E	77
29	113	LOS_D	40
27	95	LOS_F	83
46	890	LOS_C	30
62	569	LOS_C	28
21	87	LOS_E	78
29	321	LOS_B	11
30	890	LOS_A	6
7	159	LOS_A	5
99	341	LOS_F	107
12	112	LOS_A	7
71	337	LOS_E	76
37	149	LOS_E	60
52	169	LOS_E	80
16	169	LOS_C	24
119	382	LOS_F	86

Build 2b Scenario Landings Signal, No Westridge

Avg	Max		
Queue	Queue	LOS	Delay
56	756	LOS_B	11
168	756	LOS_F	58
0	47	LOS_A	1
0	0	LOS_A	1
1	47	LOS_A	5
0	0	LOS_A	1
54	607	LOS_C	30
75	367	LOS_C	28
29	270	LOS_B	11
20	98	LOS_F	108
123	607	LOS_C	22
58	201	LOS_E	78
123	607	LOS_B	12
38	197	LOS_F	83
65	241	LOS_C	34
38	197	LOS_D	41
13	158	LOS_A	9
68	269	LOS_E	74
68	269	LOS_E	72
17	903	LOS_B	11
19	264	LOS_A	7
1	47	LOS_E	67
0	0	LOS_A	
45	903	LOS_A	7
0	0	LOS_A	
3	41	LOS_F	114
31	119	LOS_A	8
22	99	LOS_E	60
22	99	LOS_F	92
25	95	LOS E	76
27	113	LOS_C	34
25	95	LOS F	85
45	884	LOS_C	30
60	520	LOS C	27
20	87	LOS E	78
27	380	LOS B	10
40	884	LOS A	8
5	123	LOS A	6
89	316	LOS F	101
12	124	LOS A	7
69	337	LOS E	76
38	149	LOS E	61
48	163	LOS E	76
12	146	LOS B	20
120	463	LOS F	84
120	405	LO3_1	04

AM Peak Hour

Existing Scenario

Existing + Developed Scenario Build 1 Scenario

Build 2 Scenario Full Build + Landings Signal

Build 2a Scenario

Land	ings	Signal	,	No	
------	------	--------	---	----	--

	Avg	Max			Avg	Max			Avg	Max			Avg	Max			Avg	Max	
Movement	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay	Queu	e Queu	e
7: Limestone & KY 676	15	418	LOS_B	16	14	367	LOS_B	15	21	280	LOS_C	24	21	481	LOS_C	25	16	364	
EB Thru	8	242	LOS_A	5	6	169	LOS_A	4	21	225	LOS_B	12	20	217	LOS_B	11	11	147	
EB Left	16	73	LOS_F	122	16	73	LOS_F	120	13	99	LOS_F	141	13	99	LOS_F	138	15	99	
EB Right	0	0	LOS_A	1	0	0	LOS_A	1	0	0	LOS_A	2	0	0	LOS_A	2	0	0	
WB Thru	27	418	LOS_B	12	23	367	LOS_A	10	18	265	LOS_A	9	19	271	LOS_B	11	35	364	
WB Right	4	108	LOS_A	4	4	189	LOS_A	4	5	189	LOS_A	4	5	150	LOS_A	4	5	157	
WB Left	1	22	LOS_F	127	1	22	LOS_F	113	47	280	LOS_E	79	60	481	LOS_F	94	2	22	
NB Right	2	50	LOS_A	7	2	50	LOS_A	7	6	115	LOS_A	8	6	98	LOS_A	8	2	52	
NB Left	0	0	LOS_A		0	0	LOS_A		3	45	LOS_A		4	45	LOS_A		0	0	
NB Thru	0	0	LOS_A	_	0	0	LOS_A	_	3	45	LOS_F	106	4	45	LOS_F	107	0	0	
SB Left	82	254	LOS_E	57	82	254	LOS_E	57	71	240	LOS_E	66	66	247	LOS_E	71	71	265	
SB Right	7	137	LOS_B	15	7	170	LOS_B	15	71	240	LOS_E	73	66	247	LOS_E	72	71	265	
SB Thru	82	254	LOS_D	54	82	254	LOS_D	54	71	240	LOS_E	77	66	247	LOS_F	80	71	265	
8: Collins & KY 676	22	216	LOS_B	14	22	285	LOS_B	14	18	329	LOS_B	17	18	383	LOS_B	16	18	358	
EB Thru	7	167	LOS_A	4	5	121	LOS_A	3	5	268	LOS_A	4	4	166	LOS_A	3	5	121	
EB Left	51	194	LOS_E	71	53	208	LOS_E	73	78	317	LOS_E	71	74	383	LOS_E	69	77	358	
WB Thru	18	216	LOS_A	10	18	285	LOS_A	9	23	329	LOS_B	11	22	323	LOS_B	10	21	2/4	
WB Right	2	84	LOS_A	3	2	/8	LOS_A	4	2	/8	LOS_A	4	2	60	LOS_A	4	2	60	
SB Left	35	164	LOS_E	69	32	147	LOS_E	64	33	147	LOS_E	65	36	162	LOS_E	66	36	162	
SB Right	20 video (Duild	183	LOS_B	11	20	180	LOS_B	10	20	163		11	22	250		11	21	250	
9: New Connector & West	riage (Build	Roundai	bout)						0	140		2	0	64		2			
WB Uturn									0	20			0	0	LUS_A				
									0	20		1	0	0		1			
WD IIIU									0	20		±	0	0		T			
EB Thru									0	20			0	64					
EB Right									0	94		1	0	64		1			
FB Liturn									0	94		3	0	64		2			
FBleft									0	94			0	64		2			
SBLeft									1	140	105 A		0	17	105 A				
SB Thru									1	140	LOS A	3	0	17	LOS A	2			
SB Right									1	140	LOS A	4	0	17	LOS A	3			
SB Uturn									1	140	LOS A		0	17	LOS A				
NB Right									0	21	LOS A		0	22	LOS A	1			
NB Uturn									0	21	LOS A		0	22	LOS A				
NB Left									0	21	LOS_A	1	0	22	LOS_A	2			
NB Thru									0	21	LOS_A	2	0	22	LOS_A	2			
10: Landings (Build 2 Signa	al)												18	502	LOS_A	9	34	599	
SB Thru													0	22	LOS_A	1	1	45	
SB Right													0	22	LOS_A	1	1	45	
SB Left													31	96	LOS_F	97	64	169	
WB Left													22	220	LOS_E	66	39	247	
WB Right													22	234	LOS_B	11	45	261	
NB Thru													34	502	LOS_A	8	54	599	
NB Right													0	21	LOS_A	2	0	21	
	-						-		-					-		-			

Landings Signal, No Backage/No Westridge

	-
LOS	Delay
LOS C	23
LOS A	6
LOS F	114
LOS A	2
105 B	19
105 A	4
	171
	8
105 A	0
LOS_F	76
105_E	81
	82
	16
	2
	5 71
	/1
LUS_B	10
LUS_A	4
LOS_E	66
LOS_B	11
LOS_B	16
LOS_A	1
LOS_A	1
LOS_F	107
LOS_E	70
LOS_B	13
LOS_B	12
LOS_A	3

Build 2b Scenario Landings Signal, No Westridge

Avg	Max		
Queue	Queue	LOS	Delay
21	481	LOS_C	25
18	198	LOS_B	11
12	99	LOS_F	130
0	0	LOS_A	2
19	271	LOS_B	11
5	150	LOS_A	4
61	481	LOS_F	95
6	99	LOS_A	8
4	45	LOS_A	
4	45	LOS_F	107
66	247	LOS_E	72
66	247	LOS_E	72
66	247	LOS_F	80
18	358	LOS_B	16
4	167	LOS_A	3
75	358	LOS_E	69
22	324	LOS_B	11
2	60	LOS_A	4
37	186	LOS_E	67
22	250	LOS_B	11
0	67	LOS_A	2
0	0	LOS_A	
0	0	LOS_A	
0	0	LOS_A	1
0	0	LOS_A	
0	63	LOS_A	
0	63	LOS_A	2
0	63	LOS_A	2
0	63	LOS_A	
0	67	LOS_A	
0	67	LOS_A	2
0	67	LOS_A	4
0	67	LOS_A	
0	21	LOS_A	1
0	21	LOS_A	
0	21	LOS_A	2
0	21	LOS_A	2
18	503	LOS_A	9
0	22	LOS_A	1
0	22	LOS_A	1
31	120	LOS_F	97
22	220	LOS_E	66
22	234	LOS_B	12
33	503	LOS_A	8
0	21		2

AM Peak Hour	Build 3 S	cenario		
	Full Build	+ WB Ramp	Signal	
	Avg	Max		
Movement	Queue	Queue	LOS	Delay
1: US 127 & EB On-Ramp	139	1022	LOS_C	23
SB Left	395	1022	LOS_F	115
2: US 127 & WB Ramps	23	376	LOS_B	13
NB Thru	23	314	LOS_A	6
NB Left	19	121	LOS F	83
NB Right	0	0	LOS A	
SB Thru	23	376	LOS A	8
SB Left	-	-	_	-
WB Right (Off-Ramp)	Free flow.	shifted sou	ith	
WB Right (Development)	1	147	LOS B	10
WB1eft	73	334	105 F	74
W/B Thru	73	33/	105 E	66
2: US 127 & Leonardwood	63	905		37
SR Thru	60	275		27
SB Right	22	2/3		12
SBLoft	15	240 /lQ		12 QQ
	220	40 205		20 27
NDIniu	223	211		37 70
ND LUIL	220	214		70
	229	252	LOS_R	19
	32	223		89
	55	267		48
WB Thru	32	223	LOS_D	48
EB Right	13	149	LOS_A	9
EB Left	72	293	LOS_E	75
EB Thru	72	293	LOS_E	76
4: US 127 & Franklin Square	31	903	LOS_B	18
SB Thru	27	243	LOS_A	9
SB Left	33	168	LOS_E	79
SB Right	0	0	LOS_A	
NB Thru	140	903	LOS_B	14
NB Right	0	52	LOS_A	4
NB Left	21	137	LOS_F	111
EB Right	33	118	LOS_A	9
EB Left	22	99	LOS_E	60
EB Thru	22	99	LOS_F	91
WB Left	18	68	LOS_E	76
WB Right	19	85	LOS_D	49
WB Thru	18	68	LOS_F	89
5: US 127 & KY 676	44	867	LOS_C	29
SB Thru	60	523	LOS_C	27
SB Left	20	86	LOS E	78
SB Right	28	422	LOS B	11
NB Thru	27	867	LOS A	6
NB Right	7	219	LOS A	6
NBleft	, 82	291	105 F	97
FR Right	15	148		8
FB1oft	65	227		75
FR Thru	26	1/0		60
W/P Loft	30	167		70
WB LETT	49	100		/8
WB Right	15	190	LOS_C	24
WB Thru	120	462	LOS_F	84

Build 3a Scenario

WB Ramp	Signal, No E	Backage/No	Westridge
Avg	Max		
Queue	Queue	LOS	Delay
72	874	LOS_B	14
214	874	LOS_F	73
17	505	LOS_B	12
0	0	LOS_A	4
23	121	LOS_F	96
21	258	LOS_A	6
15	505	LOS A	6
25	144	LOS E	69
Free flow,	shifted sou	th	
0	0	LOS A	6
38	169	LOS E	78
38	169	105 F	68
84	900		45
73	366		30
3/	267	105 R	12
1/0	207		102
205	233		100
290	300		44 75
54	192		/5
295	900	LOS_D	42
29	1/2	LOS_F	89
51	216	LOS_D	38
29	172	LOS_D	45
13	159	LOS_A	9
70	293	LOS_E	73
70	293	LOS_E	74
16	903	LOS_A	9
37	370	LOS_A	9
1	22	LOS_E	55
0	0	LOS_A	
25	903	LOS_A	4
0	0	LOS_A	1
4	48	LOS F	99
33	118	LOS A	9
22	99	LOS E	59
22	99	LOS F	91
18	68	LOS F	70
18	85		44
18	68	105 F	92
75	689		2/
61	5/15	105_0	34 20
21	545 02		2ð 77
21	00 207		11
29	287	LOS_B	11
- 21	449	LUS_A	6
7	190	LOS_A	6
79	317	LOS_F	90
17	196	LOS_A	10
65	337	LOS_E	74
37	148	LOS_E	63
397	688	LOS_F	128
11	145	LOS_B	19
152	671	LOS_F	84

Build 3b Scenario WB Ramp Signal, No Westridge

Avg	Max		
Queue	Queue	LOS	Delay
84	922	LOS_C	16
250	922	LOS_F	84
18	554	LOS_B	12
0	0	LOS_A	4
24	121	LOS_F	97
22	298	LOS_A	6
17	554	LOS_A	6
25	144	LOS_E	71
Free flow,	shifted sou	th	
0	0	LOS_A	5
39	195	LOS_E	76
39	195	LOS_E	70
56	823	LOS_C	33
70	389	LOS_C	28
31	267	LOS_B	12
15	72	LOS_F	114
167	823	LOS_C	28
57	179	LOS_E	74
167	823	LOS C	21
31	192	LOS F	91
55	236	LOS D	43
31	192	LOS D	46
13	157	LOS A	9
68	293	LOS E	71
68	293	LOS E	70
22	903	LOS B	13
20	239	LOS A	7
6	70	LOS E	59
0	0	LOS A	
96	903	105 B	10
0	0	105 A	1
7	46	105 F	114
33	118		10
22	99	105 F	59
22	99	105 F	91
18	68	105 F	74
19	85		50
18	68	105 F	89
44	800		29
 50	5/5		23
20	245	105_C	77
20	367		11
20 //2	800		<u>ک</u>
- +2 E	121		0 6
76	121		0 07
16	106		9Z 0
10	720		ש דר
26	538 170	LOS_E	10
30	109		70
49	124		79
16	1/1		23
116	427	LOS_F	82

Build 3c Scenario
Full Build + WB Ramp Signal (with SBL)

Avg	Max		,
Oueue	Queue	LOS	Delay
84	897	LOS C	16
249	897	LOS F	84
17	554	LOS B	11
0	0	105 A	4
23	121	105 F	96
19	258		6
15	554	105_A	5
25	111		5 72
25	144	LU3_L	12
0	0	LOS_A	5
39	195	LOS_E	79
39	195	LOS_E	67
56	842	LOS_C	33
69	389	LOS_C	28
32	267	LOS_B	12
12	46	LOS F	116
170	842	LOS C	29
55	171	LOS E	70
170	842	LOS B	17
32	192	LOS F	91
54	236	LOS D	45
32	192		45
13	157	IOS A	9
68	202	LOS_F	71
68	200	LOS_E	70
1 2	295		12
21	200		7
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	239 70		/ EQ
0	/0		23
0	002		11
55	905		
<u> </u>	0	LUS_A	01
5	62	LUS_F	91
33	118	LOS_A	9
22	99	LOS_E	59
22	99	LOS_F	91
18	68	LOS_E	67
18	85	LOS_D	45
18	68	LOS_F	89
45	870	LOS_C	29
60	545	LOS_C	27
20	86	LOS_E	77
28	367	LOS_B	11
43	870	LOS_A	8
5	149	LOS_A	6
77	266	LOS_F	92
16	196	LOS_A	9
66	338	LOS_E	75
36	149	LOS_E	60
50	167	LOS_E	79
17	217	LOS_C	26
116	436	LOS F	82

Build 3d : Full Build +	Build 3d Scenario Full Build + WB Ramp Signal (No BIBO)									
Avg	Avg Max									
Queue	Queue	LOS	Delay							
84	897	LOS_C	16							
249	897	LOS_F	84							
17	554	LOS_B	11							
0	0	LOS_A	4							
23	121	LOS F	96							
19	258	LOS A	6							
15	554	LOS A	5							
25	144	LOS E	72							
	<u> </u>									
0	0	LOS A	5							
39	195	LOS E	79							
39	195	LOS E	67							
56	842		33							
69	289		28							
27	267	105_0	17							
32 17	46		116							
170	940 040		20							
1/0	042 171		25 70							
23 170	1/1		17							
1/0	84Z		1/							
32	192		91							
54	230	LUS_U	45							
32	192	LOS_D	45							
13	157	LOS_A	9							
68	293	LOS_E	71							
68	293	LOS_E	70							
22	903	LOS_B	13							
21	239	LOS_A	7							
6	70	LOS_E	59							
0	0	LOS_A	_							
99	903	LOS_B	11							
0	0	LOS_A	0							
5	62	LOS_F	91							
33	118	LOS_A	9							
22	99	LOS_E	59							
22	99	LOS_F	91							
18	68	LOS_E	67							
18	85	LOS_D	45							
18	68	LOS_F	89							
45	870	LOS_C	29							
60	545	LOS_C	27							
20	86	LOS E	77							
28	367	LOS B	11							
43	870	LOS A	8							
.5	149	LOS A	6							
77	266	LOS F	92							
1.6	196	LOS A	9							
66	338	105 F	75							
36	149	105 E	60							
50	167		70							
17	217		26							
116	/36		20 87							

Build 3e Scenario

Full Build + WB Ramp Signal (No RIRO/Loop Merge)

	VB Ramp Sign		oop weige)
Avg Queue	lviax Queue	LOS	Delay
86	898	LOS C	16
256	898	LOS F	86
18	505	LOS B	12
0	61	105 A	3
21	114	LOS F	88
21	419		7
1/	505		6
27	144		71
27	144	105_1	/1
0	0	LOS_A	6
38	169	LOS_F	81
38	169	LOS E	71
91	1169	LOS D	47
73	365	LOS C	30
33	267	LOS B	12
140	317	LOS F	108
364	1169	LOS D	49
51	182	LOS F	66
364	1169		50
29	172	LOS F	91
51	216	LOS D	39
29	172		45
14	159	105 A	9
69	293	105 F	72
69	293	105 E	71
15	390	LOS A	9
37	390	105 A	9
1	22	LOS E	55
0	0	LOS A	
18	344	105 A	4
0	0	105 A	1
4	43		101
22	118		9
22	00		50
22	99	105 E	91
18	68		70
10	85		/0
19	68		47
75	700		24
60 60	170		28
21	86	LOS_C	78
30	371		11
21	301		6
21 Q	172		5
0 77	205		20
17	169		07
11	700		ד דו
20	1/0		/4 6/
207	148		120
38/	1.47		128
9 171	147	LOS_B	13
1/1	090	LUSF	80

AM Peak Hour	Build 3 S	cenario			Build	3a Scen	ario			Build 3b	Scenario		
	Full Build +	+ WB Ramp	Signal		WB R	amp Signa	l, No l	Backage/No	Westridge	WB Ramp	Signal, No	Westridge	
	Avg	Max			Av	g N	lax			Avg	Max		
Movement	Queue	Queue	LOS	Delay	Que	ue Qu	eue	LOS	Delay	Queue	Queue	LOS	Delay
7: Limestone & KY 676	23	481	LOS_C	27	17	73	79	LOS_C	24	22	481	LOS_C	26
EB Thru	25	224	LOS_B	14	13	32	21	LOS_A	7	25	241	LOS_B	14
EB Left	13	73	LOS_F	111	18	3 8	36	LOS_F	111	12	74	LOS_F	102
EB Right	0	0	LOS_A	4	0		0	LOS_A	1	0	0	LOS_A	3
WB Thru	20	268	LOS_B	11	33	3 3	43	LOS_B	17	24	359	LOS_B	12
WB Right	5	125	LOS_A	4	10) 3	79	LOS_A	6	6	302	LOS_A	5
WB Left	66	481	LOS_F	102	0	2	21	LOS_A	9	58	481	LOS_F	90
NB Right	5	78	LOS_A	8	2		52	LOS_A	8	5	76	LOS_A	8
NB Left	3	45	LOS_A		0		0	LOS_A		3	45	LOS_A	
NB Thru	3	45	LOS_F	94	0		0	LOS_A		3	45	LOS_F	94
SB Left	67	267	LOS_E	71	82	13	14	LOS_F	85	65	243	LOS_E	69
SB Right	67	267	LOS_E	66	82	13	14	LOS_F	95	65	243	LOS_E	67
SB Thru	67	267	LOS_F	82	82	13	14	LOS_F	81	65	243	LOS_E	77
8: Collins & KY 676	18	384	LOS_B	16	19) 3	60	LOS_B	17	19	385	LOS_B	17
EB Thru	5	216	LOS_A	4	6	1	69	LOS_A	4	5	196	LOS_A	4
EB Left	72	384	LOS_E	67	80) 3	60	LOS_E	73	78	385	LOS_E	72
WB Thru	21	273	LOS_B	11	22	2 2	10	LOS_B	11	23	224	LOS_B	11
WB Right	2	84	LOS_A	5	2	1	07	LOS_A	4	2	107	LOS_A	4
SB Left	35	164	LOS_E	64	39	9 2	12	LOS_E	70	39	212	LOS_E	70
SB Right	24	246	LOS_B	12	22	1 2	51	LOS_B	11	22	251	LOS_B	12
9: New Connector & Westrid	0	96	LOS_A	2						0	130	LOS_A	2
WB Uturn	0	21	LOS_A							0	20	LOS_A	
WB Left	0	21	LOS_A							0	20	LOS_A	
WB Thru	0	21	LOS_A	1						0	20	LOS_A	1
WB Right	0	21	LOS_A							0	20	LOS_A	
EB Thru	1	96	LOS_A							0	44	LOS_A	
EB Right	1	96	LOS_A	2						0	44	LOS_A	0
EB Uturn	1	96	LOS_A	2						0	44	LOS_A	2
EB Left	1	96	LOS_A							0	44	LOS_A	
SB Left	0	66	LOS_A							0	130	LOS_A	
SB Thru	0	66	LOS_A	2						0	130	LOS_A	2
SB Right	0	66	LOS_A	3						0	130	LOS_A	3
SB Uturn	0	66	LOS_A							0	130	LOS_A	
NB Right	0	21	LOS_A	1						0	44	LOS_A	0
NB Uturn	0	21	LOS_A							0	44	LOS_A	
NB Left	0	21	LOS_A	2						0	44	LOS_A	1
NB Thru	0	21	LOS_A	2						0	44	LOS_A	2

Build 3c Scenario	
Full Build + WB Ramp Signal (with SBL)	

i an Bana i	tte nump	Signal (With	1 302/
Avg	Max		
Queue	Queue	LOS	Delay
22	481	LOS_C	26
24	240	LOS_B	14
13	73	LOS_F	109
0	0	LOS_A	3
21	359	LOS_B	11
6	302	LOS_A	5
58	481	LOS_F	89
5	77	LOS_A	8
3	45	LOS_A	
3	45	LOS_F	92
65	267	LOS_E	67
65	267	LOS_E	66
65	267	LOS_F	80
19	385	LOS_B	17
5	212	LOS_A	4
81	385	LOS_E	74
23	218	LOS_B	11
2	107	LOS_A	4
39	212	LOS_E	70
22	251	LOS_B	12
0	163	LOS_A	2
0	20	LOS A	
0	20	LOS A	
0	20	LOS_A	1
0	20	LOS A	
0	21	LOS_A	
0	21	LOS_A	3
0	21	LOS_A	2
0	21	LOS_A	
1	163	LOS_A	
1	163	LOS_A	2
1	163	LOS A	4
1	163	LOS_A	
0	44	LOS_A	4
0	44	LOS A	
0	44	LOS_A	2
0	44	LOS A	2

Full Build + WB Ramp Signal (No RIRO)

Max		
Queue	LOS	Delay
481	LOS_C	26
240	LOS_B	14
73	LOS_F	109
0	LOS_A	3
359	LOS_B	11
302	LOS_A	5
481	LOS_F	89
77	LOS_A	8
45	LOS_A	
45	LOS_F	92
267	LOS_E	67
267	LOS_E	66
267	LOS_F	80
385	LOS_B	17
212	LOS_A	4
385	LOS_E	74
218	LOS_B	11
107	LOS_A	4
212	LOS_E	70
251	LOS_B	12
163	LOS_A	2
20	LOS_A	
20	LOS_A	
20	LOS_A	1
20	LOS_A	
21	LOS_A	
21	LOS_A	3
21	LOS_A	2
21	LOS_A	
163	LOS_A	
163	LOS_A	2
163	LOS_A	4
163	LOS_A	
44	LOS_A	4
44	LOS_A	
44	LOS_A	2
44	LOS_A	2

Build 3e Scenario

Full Build + WB Ramp Signal (No RIRO/Loop Merge)

Avg	Max		
Queue	Queue	LOS	Delay
17	379	LOS_C	23
10	195	LOS_A	6
18	86	LOS_F	109
0	0	LOS_A	2
34	343	LOS_B	16
10	379	LOS_A	6
1	22	LOS_F	101
2	52	LOS_A	8
0	0	LOS_A	
0	0	LOS_A	
81	347	LOS_F	87
81	347	LOS_F	92
81	347	LOS_E	79
19	361	LOS_B	17
6	186	LOS_A	4
75	361	LOS_E	70
22	210	LOS_B	11
2	107	LOS_A	4
39	212	LOS_E	70
22	251	LOS_B	12
0	20	LOS_A	1
0	20	LOS_A	
0	20	LOS_A	1
0	20	LOS_A	
0	20	LOS_A	
0	0	LOS_A	
0	0	LOS_A	1
0	0	LOS_A	
0	0	LOS_A	0
0	20	LOS_A	
0	20	LOS_A	1
0	20	LOS_A	
0	20	LOS_A	
0	0	LOS_A	

PM Peak Hour

Movement

NB Right

North/South & East/West

Existing Scenario

Avg Max

Queue Queue LOS Delay

99

3

LOS A

8

5

Existing + Developed Scenario

LOS Delay

Max

Queue

Avg

Queue

Build 1 Scenario

Max

Queue

LOS Delay

Avg

Queue

Max

Queue

Avg

Queue

Build 2 Scenario	
Full Build + Landings Signal	

LOS_A

LOS_B

LOS_A

LOS B

LOS_A

LOS_D

LOS_C

LOS B

LOS_E

LOS_B

LOS_F

LOS_A

LOS F

LOS_C

LOS_E

LOS_F

LOS F

LOS F

LOS_C

LOS B

LOS E

LOS_A

LOS A

LOS_A

LOS_F

LOS E

LOS F

LOS_F

LOS_F

LOS_B

LOS_F

LOS_E

LOS E

LOS_F

LOS_D

LOS_D

LOS A

LOS F

LOS_D

LOS E

LOS E

LOS_E

LOS_A

LOS_E

LOS_D

LOS D

LOS F

LOS_A

LOS_C

LOS B

LOS F

LOS D

411

Delay

3

15

1

13

1

50

29

11

66

15

135

7

105

23

71

160

150 162

25

20

73

5

6

4

96

56

85 96

101

20

122

57

66

94

37

46

9

107

46

75

64

62

8

76

51

36

98

8

28

10

84

37

Build 2a Scenario

1: US 127 at EB On-Ramp	9	283	LOS A	3	3	269	LOS A	2	23	526	LOS A	5	14	405
SB Left	26	283	LOS B	11	10	269	LOS A	8	68	526	LOS C	20	41	405
2: US 127 & WB Ramps	17	323	LOS A	4	37	472	LOS A	8	1	46	LOS A	1	1	87
NB Left	7	135	105.0	22	1	38	105 A	4	3	46	LOS B	12	3	87
WB Right	61	323	105.0	20	146	472		35	0	0	105 A	1	0	0
3: US 127 & Leonardwood	122	917	LOS D	45	308	915	LOS F	96	225	902	LOS E	57	200	902
SB Thru	183	862	105.0	25	29	444	105 F	74	156	862	105.0	25	226	862
SB Right	37	917	105 B	15	12	293		38	130	194	105 A	10	13	177
SBLeft	63	266	105 F	82	834	886	105 F	498	71	242		97	30	98
NB Thru	78	525		29	101	732		30	84	457		31	36	288
NBLeft	146	619	LOS_E	115	73	236	105_C	82	132	636		114	142	620
NB Right	140	87		12	47	437		18	84	457		10	36	288
WBLeft	78	318		<u>81</u>	438	548		180	213	436		123	83	385
WB Bight	117	361		15	490	592	105 F	100	213	480		28	122	428
WB Thru	78	318		44	438	548	105_1	136	213	436	105 E	75	83	385
FB Right	309	902	105 F	70	481	915	105 F	76	623	902	105 E	125	691	902
FBLeft	200	880	105_E	98	584	880	105 E	144	480	880	105 F	141	460	880
EB Thru	200	880	105 F	102	584	880	105 F	152	480	880	105 F	146	460	880
4. US 127 & Franklin Square	200	773		14	112	941		97		889		26	56	888
SB Thru	50	773		10	853	9/1	105 F	249	71	889		13	140	888
SBLeft	6	71		72	2	46	105_F	369	108	884		119	5	72
SB Right	0	63		72	0	62		54	0	62		3	0	62
NB Thru	23	292		6	14	321		<u></u> Д	36	372		10	19	272
NB Right	0	0		0	0	0		-	12	169		5	8	179
NB Left	1	17		95	5	46		92	63	168		92	71	168
FB Bight	71	204		33	92	204	105 F	193	75	204		34	75	204
FBLeft	58	184	105 E	77	75	184	105 F	94	61	184	LOS_E	85	62	184
FB Thru	58	184	105_E	128	75	184	105_1	85	61	184	105 F	103	62	184
WBLeft	38	147	105_F	85	36	170	105_1	150	79	216	105 F	96	83	216
WB Right	43	164	LOS B	11	40	187	105 A	9	91	233		21	97	233
WBThru	38	147	LOS F	121	36	170	LOS F	110	79	216	LOS F	145	83	216
5: US 127 & KY 676	94	1099	LOS D	48	305	1326	LOS F	141	129	1324	LOS E	56	125	1307
SB Thru	256	1099		44	1249	1326	105 F	410	690	1291	105 F	66	667	1307
SB Left	40	187	LOS F	91	8	48	LOS F	448	45	183	LOS F	104	46	191
SB Right	7	122	LOS B	20	3	101	LOS F	108	59	1324	LOS D	36	15	180
NB Thru	99	332	LOS D	39	71	354	LOS C	30	122	375	LOS D	48	111	356
NB Right	52	338	LOS B	14	36	314	LOS A	10	23	320	LOS A	9	23	273
NB Left	108	339	LOS F	85	118	327	LOS F	84	167	468	LOS F	101	161	458
EB Right	65	349	LOS C	29	532	719	LOS F	347	75	437	LOS C	30	116	530
EB Left	132	408	LOS F	84	505	695	LOS F	160	117	436	LOS E	76	115	411
EB Thru	67	199	LOS E	67	51	192	LOS F	148	63	242	LOS E	62	66	341
WB Left	221	661	LOS F	86	604	719	LOS F	340	74	342	LOS E	60	75	362
WB Right	10	140	LOS A	9	9	195	LOS B	12	9	122	LOS A	9	8	101
WBThru	75	435	LOS F	65	473	709	LOS F	64	101	352	LOS F	78	96	355
7: Limestone & KY 676	44	581	LOS C	35	176	1656	LOS F	99	79	694	LOS D	51	74	591
EB Thru	66	581	LOS C	22	36	389	LOS B	17	79	464	LOS D	36	80	466
EB Left	86	442	LOS F	91	48	196	LOS E	80	58	369	LOS F	82	74	419
EB Right	8	313	LOS A	5	1	120	LOS A	3	6	195	LOS B	11	9	198
WB Thru	84	542	LOS C	27	1254	1656	LOS F	195	75	562	LOS C	27	79	562
WB Right	11	373	LOS B	11	3	111	LOS E	63	17	430	LOS B	11	16	430
WB Left	9	73	LOS F	88	1	21	LOS F	1261	100	540	LOS F	88	95	540

176 LOS F 84

96

694

LOS D

41

45

Avg	Max		
Queue	Queue	LOS	Delay
3	183	LOS_A	2
10	183	LOS_A	8
0	46	LOS_A	1
2	46	LOS_A	9
0	0	LOS_A	1
274	942	LOS_F	93
504	863	LOS_F	108
6	161	LOS_D	41
108	865	LOS_F	168
88	537	LOS_C	23
140	522	LOS_F	130
88	537	LOS_A	7
102	436	LOS_F	150
141	480	LOS_C	29
102	436	LOS_E	64
862	942	LOS_F	929
516	901	LOS_F	418
516	901	LOS_F	341
96	902	LOS_D	54
638	902	LOS_F	97
4	48	LOS_F	161
0	63	LOS_D	38
19	216	LOS_A	6
7	169	LOS_A	4
57	193	LOS_F	85
74	204	LOS_D	48
60	184	LOS_E	79
60	184	LOS_F	125
45	96	LOS_F	118
56	114	LOS_C	26
45	96	LOS_F	118
268	1286	LOS_F	118
1084	1286	LOS_F	185
33	215	LOS_F	158
3	147	LOS_F	82
113	341	LOS_D	53
115	573	LOS_C	28
120	432	LOS_E	77
601	706	LOS_F	373
455	682	LOS_F	168
56	244	LOS_F	194
487	680	LOS_F	143
8	141	LOS_A	8
141	651	LOS_E	62
201	1656	LOS_E	66
39	535	LOS_B	19
80	365	LOS_F	101
3	266	LOS_A	3
784	1656	LOS_F	89
682	1656	LOS_B	15
5	46	LOS_F	174
4	102	LOS_C	24

Landings Signal, No Backage/No Westridge

Build 2b Scenario Landings Signal, No Westridge

Avg	Max		
Queue	Queue	LOS	Delay
10	269	LOS A	3
31	269	LOS B	13
0	46	LOS A	1
2	46	LOS A	9
0	0	LOS A	1
251	926	LOS E	63
115	863		28
10	173	105 B	11
658	865	105 F	443
41	391		17
146	455	105 F	136
41	391		6
9 <u>-</u> 81	416	105 F	91
120	460		28
×1	416	105 E	66
606	926	LOS_E	114
178	920		114
470	2004 221		144
470 0/	004		27
04 //22	902		37
425	902 17		4J QG
4	47		00
0	202		0
20	105	LUS_A	0
ک ۲۲	125	LUS_A	4
50	204		94
/ð	204		40
63	184	LUS_F	80
63	184	LOS_F	97
85	195	LOS_F	116
99	212	LO2_R	19
85	195	LOS_F	114
194	1286	LOS_E	79
862	1286	LOS_F	92
41	170	LOS_F	119
8	124	LOS_D	46
119	402	LOS_D	47
20	289	LOS_A	8
203	489	LOS_F	121
388	707	LOS_F	143
330	682	LOS_F	126
114	677	LOS_F	116
134	659	LOS_F	92
10	122	LOS_A	10
95	352	LOS_E	74
80	663	LOS_D	51
72	461	LOS_C	34
59	343	LOS_F	92
7	193	LOS_A	7
66	466	LOS_C	25
14	224	LOS_A	9
87	485	LOS_E	80
115	643	LOS_D	54

PM Peak Hour

Ν Ν

1

Existing Scenario

Existing + Developed Scenario Build 1 Scenario

Build 2 Scenaric

rio	
lings Signal	
•	

Build 2a Scenario

Landings S	ignal, No Ba	ackage/No \	Nestridg
Avg	Max		
Queue	Queue	LOS	Delay
124	439	LOS_F	203
124	439	LOS_F	160
94	318	LOS_F	85
94	318	LOS_F	89
94	318	LOS_F	83
25	492	LOS_C	23
9	267	LOS_A	6
71	261	LOS_E	70
81	492	LOS_C	25
3	93	LOS_A	6
44	287	LOS_E	73
18	184	LOS_B	12
241	1000	LOS_D	44
	1228	_	44
12	498	LOS C	23
12 12	498 498	LOS_C LOS_B	23 15
12 12 12 467	498 498 617	LOS_C LOS_B LOS_F	23 15 130
12 12 467 442	498 498 617 1545	LOS_C LOS_B LOS_F LOS_F	44 23 15 130 126
12 12 467 442 455	498 498 617 1545 1559	LOS_C LOS_B LOS_F LOS_F LOS_C	44 23 15 130 126 30
12 12 467 442 455 69	498 498 617 1545 1559 338	LOS_C LOS_B LOS_F LOS_F LOS_C LOS_C	44 23 15 130 126 30 22
12 12 467 442 455 69 3	498 498 617 1545 1559 338 108	LOS_C LOS_B LOS_F LOS_F LOS_C LOS_C	44 23 15 130 126 30 22 4

													Full Build +	Landings Si	gnai	
orth/South & East/West	Avg	Max			Avg	Max			Avg	Max			Avg	Max		
lovement	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay
NB Left	52	195	LOS_F	83	240	427	LOS_F	396	191	665	LOS_F	156	178	591	LOS_F	154
NB Thru	52	195	LOS_F	103	240	427	LOS_F	359	191	665	LOS_F	174	178	591	LOS_F	158
SB Left	115	254	LOS_E	78	131	254	LOS_F	84	90	294	LOS_F	83	91	294	LOS_F	82
SB Right	5	137	LOS_C	22	38	279	LOS_E	78	90	294	LOS_F	88	91	294	LOS_F	91
SB Thru	115	254	LOS_F	85	131	254	LOS_F	93	90	294	LOS_E	78	91	294	LOS_F	84
: Collins & KY 676	38	498	LOS_B	20	120	771	LOS_E	64	22	367	LOS_B	17	21	369	LOS_B	16
EB Thru	8	261	LOS_A	5	14	291	LOS_A	8	12	367	LOS_A	5	11	317	LOS_A	5
EB Left	127	498	LOS_E	74	95	368	LOS_E	67	85	364	LOS_E	64	80	369	LOS_E	62
WB Thru	34	244	LOS_B	12	458	771	LOS_F	111	37	317	LOS_B	12	35	315	LOS_B	12
WB Right	2	93	LOS_A	5	1	84	LOS_D	37	3	85	LOS_A	6	3	93	LOS_A	7
SB Left	44	287	LOS_E	73	23	260	LOS_F	100	44	287	LOS_E	73	44	287	LOS_E	73
SB Right	13	198	LOS_A	10	132	309	LOS_F	132	14	198	LOS_B	10	14	198	LOS_B	10
: New Connector & Westric	lge (Build	Roundat	oout)						9	424	LOS_B	10	7	472	LOS_A	8
WB Uturn									1	45	LOS_A		1	46	LOS_A	
WB Left									1	45	LOS_A		1	46	LOS_A	
WB Thru									1	45	LOS_B	11	1	46	LOS_A	9
WB Right									1	45	LOS_A		1	46	LOS_A	
EB Thru									21	402	LOS_A		3	145	LOS_A	
EB Right									21	402	LOS_C	16	3	145	LOS_A	7
EB Uturn									21	402	LOS_B	12	3	145	LOS_A	5
EB Left									21	402	LOS_A		3	145	LOS_A	
SB Left									21	424	LOS_A		4	175	LOS_A	
SB Thru									21	424	LOS_B	14	4	175	LOS_A	5
SB Right									21	424	LOS_C	18	4	175	LOS_A	10
SB Uturn									21	424	LOS_A		4	175	LOS_A	
NB Right									6	212	LOS_A		17	472	LOS_A	10
NB Uturn									7	212	LOS_A		13	472	LOS_A	
NB Left									7	212	LOS_A	7	13	472	LOS_B	13
NB Thru									7	212	LOS_A	7	13	472	LOS_B	11
0: Landings (Build 2 Signal)													74	616	LOS_B	19
SB Thru													19	523	LOS_A	6
SB Right													19	523	LOS_A	8
SB Left													161	616	LOS_F	84
WB Left													102	443	LOS_E	72
WB Right													111	457	LOS_B	15
NB Thru													51	369	LOS_B	16
NB Right													1	143	LOS_A	3

Build 2b Scenario Landings Signal, No Westridge

Avg	Max				
Queue	Queue	LOS	Delay		
213	663	LOS_F	177		
213	663	LOS_F	166		
90	294	LOS_F	81		
90	294	LOS_F	89		
90	294	LOS_E	78		
21	375	LOS_B	16		
10	342	LOS_A	5		
83	375	LOS_E	68		
33	291	LOS_B	11		
3	85	LOS_A	5		
44	259	LOS_E	73		
15	202	LOS_B	10		
17	630	LOS_B	13		
1	45	LOS_A			
1	45	LOS_A			
1	45	LOS_A	9		
1	45	LOS_A			
7	245	LOS_A			
7	245	LOS_C	16		
7	245	LOS_A	8		
7	245	LOS_A			
8	222	LOS_A			
8	222	LOS_A	5		
8	222	LOS_B	14		
8	222	LOS_A			
44	630	LOS_D	33		
34	630	LOS_A			
34	630	LOS_C	23		
34	630	LOS_C	21		
69	494	LOS_B	18		
24	452	LOS_A	4		
24	452	LOS_A	9		
117	494	LOS_E	78		
106	443	LOS_E	75		
116	457	LOS_B	14		
51	369	LOS_B	16		
2	95	LOS A	3		

PM Peak Hour	Build 3 S	cenario			Build	3a Scenario)		Build 3b	o Scenario	0		Build	3c Scenar	io		Build 3	d Scena
	Full Build +	+ WB Ramp	Signal (no	SBL)	WB Ra	mp Signal, No E	Backage/No	Westridge	WB Ramp	p Signal, N	o Westridge	2	Full Bu	ild + WB Ra	mp Signal	(with SBL)	Full Buil	d + WB F
	Avg	Max			Av	g Max			Avg	Max			Avg	Max			Avg	Max
Movement	Queue	Queue	LOS	Delay	Que	ue Queue	LOS	Delay	Queue	Queue	LOS	Delay	Quei	e Queue	LOS	Delay	Queue	Quei
1: US 127 at EB On-Ramp	25	581	LOS_A	5	28	467	LOS_A	6	24	637	LOS_A	5	19	539	LOS_A	5	22	511
SB Left	74	581	LOS_C	22	84	467	LOS_C	24	72	637	LOS_C	22	56	539	LOS_C	19	67	511
2: US 127 & WB Ramps	52	586	LOS_C	22	17	7 1656	LOS_D	38	81	1001	LOS_C	30	68	814	LOS_C	29	72	935
NB Thru	15	241	LOS_A	7	0	18	LOS_A	4	0	0	LOS_A	3	0	0	LOS_A	3	0	0
NB Left	18	114	LOS_E	69	20	94	LOS_E	74	20	94	LOS_E	77	20	94	LOS_E	77	20	94
NB Right	0	0	LOS_A	3	51	314	LOS_C	21	37	336	LOS_B	15	36	292	LOS_B	14	37	292
SB Thru	105	586	LOS_B	19	15	732	LOS_C	23	185	891	LOS_C	25	185	814	LOS_C	25	187	841
SB Left	-	-	-	-	10	5 314	LOS_E	66	41	190	LOS_E	67	40	149	LOS_E	70	45	192
WB Right (Off-Ramp)	Free flow,	shifted sou	uth		Free f	ow, shifted so	outh		Free flow	i, shifted so	outh							
WB Right (Development)	29	272	LOS_C	22	36	7 1468	LOS_D	51	76	813	LOS_C	26	38	366	LOS_C	24	50	748
WB Left	144	460	LOS_E	73	53	7 1656	LOS_F	94	207	1001	LOS_E	76	160	554	LOS_E	73	169	935
WB Thru	144	460	LOS_F	81	53	7 1656	LOS_F	105	207	1001	LOS_F	91	160	554	LOS_F	87	169	935
3: US 127 & Leonardwood	204	917	LOS_E	56	18	4 946	LOS_D	50	182	929	LOS_D	50	175	911	LOS_D	49	184	930
SB Thru	80	850	LOS_B	16	15	8 863	LOS_C	21	116	862	LOS_B	18	93	854	LOS_B	17	110	860
SB Right	14	217	LOS_A	9	14	246	LOS_B	11	15	175	LOS_A	9	17	199	LOS_A	9	13	175
SB Left	237	862	LOS_F	208	43	139	LOS_F	85	40	121	LOS_F	95	39	145	LOS_F	99	39	159
NB Thru	93	446	LOS_C	32	15	7 598	LOS_D	39	122	510	LOS_D	40	121	508	LOS_D	40	128	485
NB Left	103	440	LOS_F	103	97	527	LOS_F	97	108	463	LOS_F	105	91	439	LOS_F	90	88	440
NB Right	93	446	LOS_B	16	15	7 598	LOS_C	22	122	510	LOS_B	19	121	508	LOS_C	22	128	485
WB Left	51	167	LOS_E	76	54	164	LOS_E	76	48	168	LOS_E	74	51	153	LOS_E	78	53	169
WB Right	89	210	LOS_C	28	91	207	LOS_C	34	85	212	LOS_C	30	87	197	LOS_C	30	90	213
WB Thru	51	167	LOS_E	73	54	164	LOS_E	71	48	168	LOS_E	67	51	153	LOS_E	69	53	169
EB Right	645	917	LOS_F	99	60	7 946	LOS_F	117	625	929	LOS_F	105	618	911	LOS_F	107	617	930
EB Left	521	880	LOS_F	142	43.	5 924	LOS_F	144	481	907	LOS_F	139	457	880	LOS_F	142	513	908
EB Thru	521	880	LOS_F	148	43.	5 924	LOS_F	143	481	907	LOS_F	146	457	880	LOS_F	141	513	908
4: US 127 & Franklin Square	38	755	LOS_B	17	42	812	LOS_B	20	43	837	LOS_B	19	43	770	LOS_B	20	44	760
SB Thru	64	755	LOS_B	12	10	3 812	LOS_B	17	55	837	LOS_B	10	64	770	LOS_B	11	56	760
SB Left	5	47	LOS_E	67	5	47	LOS_F	80	57	241	LOS_F	106	54	239	LOS_F	102	55	291
SB Right	0	62	LOS_A	2	0	63	LOS_A	6	0	0	LOS_A	2	0	62	LOS_A	1	0	61
NB Thru	14	323	LOS_A	4	12	257	LOS_A	5	21	317	LOS_A	7	18	299	LOS_A	7	23	310
NB Right	6	100	LOS_A	4	8	123	LOS_A	5	7	140	LOS_A	4	8	124	LOS_A	5	8	152
NB Left	57	162	LOS_F	97	60	221	LOS_F	95	52	146	LOS_F	88	56	217	LOS_F	91	57	318
	/3	204	LOS_C	27	/5	204	LOS_D	38	//	204	LOS_C	28	/4	204	LOS_C	29	/6	204
EB Left	60	184	LOS_E	80	60	184	LOS_F	84	62	184	LOS_F	85	60	184	LOS_F	83	61	184
EB Inru	60	184	LOS_F	141	60	184	LOS_E	/3	62	184	LOS_F	106	60	184	LOS_F	93	61	184
WB Left	45	96	LOS_F	120	45	96	LUS_F	118	45	116	LUS_F	116	45	111	LUS_F	122	44	98
WB Right	56	114	LOS_C	26	56	114	LOS_C	26	56	134	LOS_C	28	56	129	LOS_C	25	55	
	45	96	LOS_F	123	45	96	LOS_F	121	45	116	LOS_F	119	45	111	LOS_F	127	44	98
5: US 12/ & KY 6/6	129	1316		56	18	1328	LOS_E	66	127	1286	LOS_E	56	130	1286		56	130	128
SB Infu	690	1316	LOS_E	64	/0.	1 1295	LUS_E	00	681	1286	LUS_E	63	682	1286	LUS_E	63	080	1280
SB Left	45	183		104	47	183	LUS_F	103	47	183		102	46	184		102	48	198
	10	205	LOS_D	36	12	1328		39	19	218		38	1/	203		37	19	180
	135	397	LOS_D	52	13	9 409		53	130	437		51	127	388		50	144	461
	49	319	LOS_B	14 115	14.	2 58U		52	154	305	LOS_B	13	68	350	LOS_B	20	170	311
	18/	480		25	22	5 5/U		128	154	435		98 20	162	445		24	1/8	484
	03	303		25	12	, 52U		40	117	412		20	ŏ/	401		34 77	116	38/
	115	430		15	11	2 48/		/5	11/ 64	430		64	118	394		// 64	110	436
	02	541		62	//	208 7 661		117	64	314		04 E7	71	241		04 E 0	50	219
WD Leit	02	440		05	4/	150		12	11	1/12		57 11	/1	174		50 10	12	147
	9	123		9 76	11	100 7 CE1		13	11	143 252		75	101	2/4		10 70	11	143
VVD IIIU	97	412	LUS_E	70	13	1 1001	LUS_E	74	33	352	LUS_E	15	101	300	LUS_E	15	90	352

enario B Ramp Signal (No RIRO)

Build 3e Scenario

Full Build + WB Ramp Signal (No RIRO/Loop Merge)

з катр	Sign	aı	(NO RIRO)	
ах				
eue	LOS	5	Delay	
11	LOS_	<u> </u>	5	
11	LOS_	C	21	
35	LOS_	_C	29	
0	LOS_	A	3	
4	LOS_	E	74	
92	LOS_	В	15	
41	LOS_	С	25	
92	LOS_	E	74	
48	LOS	С	22	
35	LOS	Ε	71	
35	LOS	Ē	79	
30	LOS	D	49	
60	105		17	
75	105	 A	8	
59	105	F	<u>م</u>	
85	105		35 /10	
10	105	<u>ר</u>	40	
		<u>_</u>	0/	
60 C0	105	_L	21	
12		E	/8	
13	LOS	_ <u>_</u> _	32	
69	LOS_	E	63	
30	LOS_	F	105	
08	LOS_	F	141	
08	LOS_	F	146	
60	LOS_	B	19	
60	LOS_	В	10	
91	LOS_	F	103	
51	LOS_	Α	2	
10	LOS_	Α	8	
52	LOS_	Α	5	
18	LOS	F	93	
04	LOS	С	29	
84	LOS	F	85	
84	LOS	F	94	
8	LOS	F	120	
15	LOS	C	26	
8	105	F	134	
86	105	E	56	
86	105	E F	62	
00	105	<u>с</u>	105	
20	105	 	26	
0U C1	105	<u>u</u>	30	
11	105	<u>_</u>	53	
11	LUS	B	1/	
84	LOS	F	108	
87	LOS	<u>_</u> C	25	
36	LOS	E	76	
19	LOS	E	63	
35	LOS	E	59	
43	LOS	В	10	
52	LOS	Е	74	

Avg	Max		
Queue	Queue	LOS	Delay
23	542	LOS_A	5
70	542	LOS_C	22
111	1230	LOS_C	34
0	55	LOS_A	4
19	95	LOS_E	70
63	412	LOS_C	22
163	888	LOS_C	23
98	298	LOS_E	63
149	1043	LOS_D	39
285	1230	LOS_E	80
285	1230	LOS_F	85
183	936	LOS_D	49
152	861	LOS_B	19
13	249	LOS_A	9
43	120	LOS_F	88
165	596	LOS_D	37
96	511	LOS_F	93
165	596	LOS_C	22
58	201	LOS_E	73
97	245	LOS_D	36
58	201	LOS_E	73
606	936	LOS_F	122
419	913	LOS_F	145
419	913	LOS_F	137
43	889	LOS_B	20
107	889	LOS_B	16
5	47	LOS_F	80
0	62	LOS_A	6
19	326	LOS_A	7
6	103	LOS_A	4
58	221	LOS_F	86
72	204	LOS_D	37
58	185	LOS_E	80
58	185	LOS_E	70
45	118	LOS_F	111
56	135	LOS_C	27
45	118	LOS_F	115
191	1319	LOS_E	67
698	1301	LOS_E	65
48	183	LOS_F	104
59	1319	LOS_D	39
158	464	LOS_D	55
158	858	LOS_D	35
227	553	LOS_F	124
157	681	LOS_E	58
120	656	LOS_E	76
69	267	LOS_E	71
465	661	LOS_F	114
11	160	LOS_B	13
129	651	LOS_E	71

PM Peak Hour	Build 3 So	cenario			Build	3a Scena	io		Build 3b	o Scenario	D		Build 3d	c Scenari	о		Build 3d	l Scenari	0	
	Full Build +	- WB Ramp	o Signal (no S	BL)	WB Rar	np Signal, N	b Backage/No	Westridge	WB Ramp	o Signal, No	o Westridge	!	Full Build	l + WB Rai	mp Signal (with SBL)	Full Build	+ WB Rar	np Signal (M	No RIRO)
	Avg	Max			Avg	Max			Avg	Max			Avg	Max			Avg	Max		
Movement	Queue	Queue	LOS	Delay	Quei	ie Queu	e LOS	Delay	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay	Queue	Queue	LOS	Delay
7: Limestone & KY 676	76	606	LOS_D	51	117	1617	LOS_E	58	74	587	LOS_D	50	80	643	LOS_D	52	65	532	LOS_D	47
EB Thru	89	483	LOS_C	35	56	558	LOS_B	18	94	476	LOS_D	36	89	481	LOS_C	35	93	532	LOS_D	37
EB Left	69	339	LOS_F	100	146	560	LOS_F	125	76	469	LOS_F	100	75	470	LOS_F	97	66	445	LOS_F	88
EB Right	11	215	LOS_A	10	17	290	LOS_A	2	14	207	LOS_A	10	12	212	LOS_A	7	13	264	LOS_A	8
WB Thru	74	562	LOS_C	26	632	1617	LOS_E	78	69	466	LOS_C	26	68	466	LOS_C	25	67	466	LOS_C	25
WB Right	15	380	LOS_A	10	13	329	LOS_B	12	15	381	LOS_A	10	17	430	LOS_B	10	14	279	LOS_A	9
WB Left	97	540	LOS_F	87	10	73	LOS_F	141	83	320	LOS_E	77	82	414	LOS_E	76	81	320	LOS_E	76
NB Right	45	468	LOS_D	43	4	101	LOS_B	18	41	491	LOS_C	32	47	615	LOS_E	56	22	268	LOS_C	22
NB Left	193	606	LOS_F	160	86	390	LOS_F	161	177	587	LOS_F	170	245	643	LOS_F	190	139	517	LOS_F	152
NB Thru	193	606	LOS_F	166	86	390	LOS_F	115	177	587	LOS_F	165	245	643	LOS_F	210	139	517	LOS_F	130
SB Left	91	294	LOS_F	82	92	339	LOS_F	84	93	294	LOS_F	83	85	270	LOS_E	79	88	294	LOS_F	81
SB Right	91	294	LOS_F	91	92	339	LOS_F	87	93	294	LOS_F	91	85	270	LOS_F	81	88	294	LOS_F	88
SB Thru	91	294	LOS_F	84	92	339	LOS_F	113	93	294	LOS_F	81	85	270	LOS_E	73	88	294	LOS_E	76
8: Collins & KY 676	22	390	LOS_B	17	23	416	LOS_B	17	23	364	LOS_B	17	22	362	LOS_B	17	23	362	LOS_B	17
EB Thru	13	390	LOS_A	6	8	344	LOS_A	5	12	364	LOS_A	5	12	338	LOS_A	5	11	314	LOS_A	5
EB Left	90	340	LOS_E	67	94	416	LOS_E	69	96	362	LOS_E	70	92	362	LOS_E	68	94	362	LOS_E	70
WB Thru	37	317	LOS_B	12	37	311	LOS_B	12	36	293	LOS_B	12	36	295	LOS_B	12	35	293	LOS_B	12
WB Right	3	85	LOS_A	6	3	93	LOS_A	6	3	85	LOS_A	6	3	85	LOS_A	6	3	85	LOS_A	6
SB Left	44	287	LOS_E	73	44	259	LOS_E	73	44	259	LOS_E	73	44	259	LOS_E	73	44	259	LOS_E	73
SB Right	14	198	LOS_A	10	15	202	LOS_B	10	15	202	LOS_B	10	15	202	LOS_B	11	15	202	LOS_B	10
9: New Connector & Westridg	1	188	LOS_A	5					5	402	LOS_A	9	5	400	LOS_A	9	5	355	LOS_A	9
WB Uturn	0	21	LOS_A						0	21	LOS_A		0	21	LOS_A		0	21	LOS_A	
WB Left	0	21	LOS_A						0	21	LOS_A		0	21	LOS_A		0	21	LOS_A	
WB Thru	0	21	LOS_A	3					0	21	LOS_A	4	0	21	LOS_A	3	0	21	LOS_A	4
WB Right	0	21	LOS_A						0	21	LOS_A		0	21	LOS_A		0	21	LOS_A	
EB Thru	1	96	LOS_A						14	402	LOS_A		13	400	LOS_A		12	355	LOS_A	
EB Right	1	96	LOS_A	5					14	402	LOS_B	13	13	400	LOS_C	15	12	355	LOS_B	14
EB Uturn	1	96	LOS_A	5					14	402	LOS_B	11	13	400	LOS_B	10	12	355	LOS_B	10
EB Left	1	96	LOS_A						14	402	LOS_A		13	400	LOS_A		12	355	LOS_A	
SB Left	4	188	LOS_A						13	335	LOS_A		11	294	LOS_A		11	289	LOS_A	
SB Thru	4	188	LOS_A	4					13	335	LOS_A	8	11	294	LOS_A	8	11	289	LOS_A	8
SB Right	4	188	LOS_A	9					13	335	LOS_C	17	11	294	LOS_C	17	11	289	LOS_C	16
SB Uturn	4	188	LOS_A						13	335	LOS_A		11	294	LOS_A		11	289	LOS_A	
NB Right	1	94	LOS_A						2	118	LOS_A	7	2	118	LOS_A	1	2	70	LOS_A	1
NB Uturn	1	94	LOS_A						2	118	LOS_A		2	118	LOS_A		2	70	LOS_A	
NB Left	1	94	LOS_A	4					2	118	LOS_A	7	2	118	LOS_A	6	2	70	LOS_A	7
NB Thru	1	94	LOS_A	4					2	118	LOS_A	5	2	118	LOS_A	5	2	70	LOS_A	6

Build 3e Scenario

Full Build + WB Ramp Signal (No RIRO/Loop Merge)

Avg	Max		
Queue	Queue	LOS	Delay
161	1503	LOS_E	58
44	505	LOS_B	16
152	616	LOS_F	126
13	346	LOS_A	3
563	1467	LOS_E	75
467	1503	LOS_B	12
10	73	LOS_F	105
3	100	LOS_B	17
107	415	LOS_F	180
107	415	LOS_F	166
92	339	LOS_F	85
92	339	LOS_F	87
92	339	LOS_F	112
23	458	LOS_B	18
11	294	LOS_A	5
96	458	LOS_E	70
37	311	LOS_B	12
4	94	LOS_A	6
44	259	LOS_E	73
15	202	LOS_B	10
0	70	LOS_A	3
0	20	LOS_A	
0	20	LOS_A	2
0	20	LOS_A	
0	20	LOS_A	
0	0	LOS_A	
0	0	LOS_A	2
0	0	LOS_A	
0	0	LOS_A	2
1	70	LOS_A	
1	70	LOS_A	6
1	70	LOS_A	
1	70	LOS_A	
0	0	LOS_A	

Appendix G: Project Summary Sheets

Capacity improvements to US 127 and Westridge Drive, plus a new backage road following Vandalay Drive to Limestone Drive.

<u>Pros</u>

- No new signals along US 127
- Modified slip ramp allows for free-flow westbound off-ramp, addressing AM peak queue concerns
- Best northbound travel times for US 127 (both peak hours)

<u>Cons</u>

- Westridge Drive is approaching capacity, with no capacity for future growth if adjacent parcels develop. This makes it especially sensitive to trip distribution assumptions.
- Requires public ownership/additional right-of-way for Westridge and Vandalay drives.
- Two signalized US 127 intersections operate at LOS E in PM peak with all left turns moves from US 127 over capacity.

DRUC Cost Estimate	Build 1						
Full Concept	\$11.3M						
US 127	\$1.8M						
Westridge Drive	\$3.8M						
Backage Road	\$2.2M						
Within Development	\$3.5M						

Item 5-80212 | Paddocks/Landings Traffic Review | March 2023

Includes Build 1 improvements plus a new signalized US 127 intersection approximately 500 feet south of Westridge Drive, similar to the 2019 TIS.

<u>Pros</u>

- Modified slip ramp allows for free-flow westbound off-ramp, addressing AM peak queue concerns
- Second signalized entrance diverts some left-turn traffic from congested Leonardwood/Westridge intersection.
- Best southbound travel times for US 127 (both peak hours)

<u>Cons</u>

- Closely spaced signals along US 127 lead to left-turn queues that block thru traffic lanes and spillback beyond upstream signals
- Build 2a fails in PM peak hour without backage road connection
- Requires public ownership/additional right-of-way for Westridge and Vandalay drives.

DRUC Cost Estimate	Build 2	Build 2a	Build 2b
Full Concept	\$10.5M	\$4.5M	\$6.7M
US 127	\$1.0M	\$1.0M	\$1.0M
Westridge Drive	\$3.8M	-	-
Backage Road	\$2.2M	-	\$2.2M
Within Development	\$3.5M	\$3.5M	\$3.5M

Includes Build 1 improvements plus a new signalized US 127 intersection approximately 1,100 feet south of Westridge Drive. Westbound ramps shift within interchange to improve spacing.

<u>Pros</u>

- Modified slip ramp allows for free-flow westbound off-ramp, addressing AM peak queue concerns
- Second signalized entrance diverts some left-turn traffic from congested Leonardwood/Westridge intersection, without queue spillback concerns of Build 2.
- Build 3a provides functional short-term option with adequate capacity and no additional right-of-way requirements.

<u>Cons</u>

- FHWA-approved IMR required for interchange modifications
- Additional storage length needed for westbound approach at new signal, affecting conceptual site layout. (Roundabout shown is representative of one possible configuration.)

DRUC Cost Estimate	Build 3	Build 3a	Build 3b	Build 3c
Full Concept	\$15.3M	\$8.8M	\$14.2M	\$15.5M
US 127/I-64 Ramps	\$4.7M	\$4.2M	\$4.2M	\$4.9M
Westridge Drive	\$3.8M	-	\$3.2M	\$3.8M
Backage Road	\$2.2M	-	\$2.2M	\$2.2M
Within Development	\$4.6M	\$4.6M	\$4.6M	\$4.6M

Item 5-80212 | Paddocks/Landings Traffic Review | March 2023

Build 3e

Includes a new signalized US 127 intersection approximately 1,100 feet south of Westridge Drive. Westbound ramps shift within interchange to improve spacing. The westbound-to-northbound off-ramp is a free-flow movement with three northbound thru lanes carried to the downstream signal. Dual lefts to a widened Westridge Drive plus a new backage road connection to Limestone Drive are also part of this concept.

Costs by Phase and Section:

Cost Estimate	US 127/Ramps	Other Routes
Design	\$0.5M	\$0.9M
Right-of-Way	-	\$5.2M
Utilities	<\$0.1M	\$0.7M
Construction	\$3.9M	\$3.2M
Total	\$4.4M	\$10.0M

Appendix H: SME Design Considerations

MEETING SUMMARY

Project: Paddocks/Landings Traffic Analyses

Item No. 5-80212

Purpose: Project Team Meeting

Place: Hybrid Meeting: KYTC Central Office and MSTeams

Meeting Date: August 23, 2022 at 11:00 AM

Participants:

Steve DeWitte	KYTC Planning
Beth Niemann	KYTC Planning
Jared Jeffers	KYTC Planning
Kevin Bailey	KYTC D5
Tom Hall	KYTC D5
Pat Matheny	KYTC D5
Andre Johannes	KYTC Design
Patrick Perry	KYTC Design
Karl Sawyer	KYTC Design
Jason Hyatt	KYTC Traffic
Logan Baker	KYTC Traffic
Jason Siwula	KYTC ASHE
Taylor Kelly	Qk4
Rebecca Thompson	Qk4
Jeremy Lukat	Qk4
Cody Davis	Qk4

KYTC tasked Qk4 to examine potential short-term traffic impacts along US 127 associated with a proposed commercial development northeast of its interchange with I-64 in west Frankfort. The proposed development includes two big box stores, other retail shops, multi-family housing, restaurants,

H-1

and a gas station. The developer has submitted two past traffic impact studies for access to US 127. Qk4 has examined these and other build concepts to keep US 127 functioning with the proposed addition of 2,000+ peak hour trips.

The team discussed the Build 3A concept (below), including the following topics:

- Do the ramp connections shown maintain adequate access control spacing? Southbound is unchanged between the taper and Leonardwood Drive. Northbound adds a lane from the ramp but includes almost 600 feet from gore to proposed signal. Though it's not ideal, the case could be made for 100-foot spacing similar to US 60 and Jett Boulevard in East Frankfort.
- Overhead signs could be added to the back of the existing truss to aid in wayfinding.
- Widening US 127 will make the already steep driveway grades to the gas station steeper.
- Details will need to be worked out as design progresses as mainline US 127 is in a superelevated section to the left and the WB exit ramp is superelevated to the right as they come together. The final design needs to ensure that the maximum rollover is not exceeded for cross slope.
- FHWA has not been involved in discussions to dates since early concepts did not impact the interchange.
- Future year traffic should be examined; FHWA will expect to see it addressed in an IMR.

- The project should provide a benefit for the public, not just accommodate the proposed development. Converting the NB-to-WB off-ramp to a free-flow movement, closing median openings to the gas station, extending the northbound left turn bays to Leonardwood Drive address existing traffic issues independent of the development.
- The team discussed which parties should be responsible for which construction costs.

- Another build option included a similar configuration but without the southbound left turn bays into the development to increase signal efficiency. The southbound left turn bays provided more operational benefits than forcing these turns to upstream signals.
- The area is zoned commercial. Aside from a new/improved connection to US 127, no permit is required for the development. Local planning/zoning could require the developer to coordinate with KYTC to provide input on the internal circulation patterns. The close spacing between the new signal and roundabout it a concern. Likely, the new connection opposite the NB-to-WB on-ramp and Vandalay Drive extension should be public streets.
- The Build 3A option presented only operates with the assumption that project elements are constructed off right-of-way as shown and modeled. If the developer/others do not construct these elements as shown (such as the roundabout) then this alternative "fails" and this would be considered a "fatal flaw."
- Subject matter experts (SME) noted several comments that would require design modifications as the project advances but these modifications as presented to the team would not significantly alter the operations of the network within the project limits. Comments from the SME's will be documented in the technical memorandum.

End of Minutes

OTHER DESIGN CONSIDERATIONS

Design considerations raised by various KYTC SMEs are noted below, organized geographically south to north.

INTERCHANGE/REALIGNED RAMP(S)

Does the vertical/horizontal alignment of US 127 provide visibility for the new ramp tie-in?

The modified WB-to-NB free-flow ramp will be parallel to and match the grade of US 127 prior to any vehicle conflict point. Once the ramp aligns with US 127, sight distance should not be an issue and drivers will be permitted to change lanes. The WB-to-NB ramp and US 127 will meet at the outside of their horizontal curves along a vertical tangent, so there are no horizontal or vertical sight obstructions. Tree clearing may benefit vehicle visibility prior to switching lanes.

The EB-to-NB off-ramp is an added lane now. The WB-to-NB off-ramp is proposed as an added lane, adding two lanes in less than 1000 feet to create four northbound thru lanes. Does the first one need to be an added lane? It seems like this adds lanes quickly without a good place to put them. Do volumes warrant four lanes? Merging the EB-to-NB off-ramp but keeping WB-to-NB as a lane add may clean it up.

Build 3e incorporates this modification. US 127 is a partial control of access facility; planners considered Figure 10-70 from the 2018 Green Book which states for an "Entrance to Entrance" ramp configuration along a Collector Distributor Roadway that spacing should be 800 feet and along a freeway it should be 1,000 feet. Current spacing shown as part of the conceptual design could be lengthened as design moves into future phases.

With the realignment of the WB-to-NB off-ramp, it's good that the ramp turns into an added lane. Merging at that steep of an approach angle is not ideal.

Another concern is the inner (left) northbound thru lane becoming a left-only to Leonardwood Drive. A thru lane becoming a turn-only lane is not ideal, especially when it's the fast lane becoming a left turn only lane. Merging the EB-to-NB off-ramp before the WB-to-NB off-ramp lane add could address this concern.

Build 3e incorporates this modification.

Does the added slip ramp to the SB-to-WB on-ramp at the new signalized intersection violate access control spacing requirements (100 ft urban/300 ft rural)?

Build 3 variations increase the access control spacing from 180 feet (existing) to approximately 650 feet (proposed) between Leonardwood Drive and the beginning of the SB-to-WB taper. Control of access will need to be coordinated with FHWA as the project progresses in design. The intent of the concept as presented along the southbound side of US 127 is to preserve access control to the SB-to-WB on-ramp taper as exists today. The slip ramp is within Kentucky's existing controlled access limits along the SB US 127 border.

Has the study considered reconfiguring the interchange as a diamond, urban diamond, SPUI, or double crossover to increase spacing? If the interchange remains as is, KYTC should not provide any new side roads between ramps and Westridge/Leonardwood. KYTC paid federal funds to control access for the existing configuration.

With the developer already moving earth, concise and efficient concepts were prioritized to minimize costs and implementation timelines. Some of the interchange concepts mentioned above may satisfy access control but could also have unintended consequences: e.g., increased costs, additional conflict points, decreased safety, and reduced efficiency. The Build 3 layout satisfies access control spacing requirements for all ramps except potentially for the NB-to-WB ramp directly opposite the proposed property access point. This is a detail that will need to be coordinated with FHWA as design progresses.

If it is determined the relocated slip ramp along SB US 127 breaks the control of access along NB US 127 (which meets control of access spacing requirements along the northbound border) then the project team may consider design refinements—such as leaving the WB I-64 slip ramp offset from the intersection by 100+ feet—as it would exist today. However, the project team strongly believed that the operational benefits justified the configuration as presented, coupled with the precedent of similar configurations across the Commonwealth:

There are several precedents in KY where local roads share intersections with interstate ramps. A local road intersecting with an interstate on-ramp—like the Build 3 variations—will not cause any queuing on to the interstate. It also does not create the wrong-wayentry safety concerns associated with intersections at off-ramps.

The developer may want to acquire any surplus right-of-way from the interchange if the footprint is reduced.

NEW SIGNAL ON US 127

On the southbound approach to the new signalized intersection, there might need to be overhead lane-use signs.

Are dual southbound lefts needed? A single lane approaching the roundabout would simplify those movements (discussed below).

Demand for the southbound left turn movement is over 400 vehicles per hour, above the threshold to consider dual turn lanes. Each of the previous TIS for the Paddocks site showed dual lefts towards the site. If the backage road and/or Westridge improvements from Build 1 are included in the final build solution, dual southbound lefts at the new signal may not be critical.

Shortening the dual southbound lefts could increase storage space for the northbound lefts to Leonardwood Drive. Left turn capacities for southbound to the new development and northbound to Leonardwood Drive should be equal—or even favoring existing northbound lefts.

This could be explored as part of future design efforts. Microsimulation for Build 3a estimates the maximum queue lengths at 314 feet southbound versus 527 feet northbound. Leonardwood Drive is having storage issues with short dual lanes now.

NEW ROUNDABOUT

The roundabout shown east of the new signalized intersection would likely operate best to alleviate queuing onto US 127 but needs additional storage capacity between intersections. No one wants to duplicate the Man o' War Boulevard/Sir Barton Way setup at Hamburg in Lexington.

There are dual lefts into the development, but the right-most lane forces drivers to turn right at the roundabout while the left lane has options. Many drivers are going to want to be in the left lane to access the shopping area—either lane will work for that. The bigger issue is people wanting to turn left at the roundabout to get to the restaurants to the north. They have to be in the left lane, but how can that be communicated back on US 127 to avoid them weaving/cutting people off/stopping between the intersection and the roundabout?

The spacing between the roundabout and US 127 is constrained by the gas station in the conceptual site plan. If the developer cannot change the gas station location, the roundabout concept can be improved to address this concern. Multilane roundabout concepts could allow for flexible movements within the constrained area. Options could be explored as part of any future design efforts.

LANDINGS RIRO

The Landings RIRO should be eliminated. It does not provide safety benefits for US 127 but adds conflict points and degrades safety/operations. Unless the gas station access could be reconfigured to the Landings RIRO instead of US 127, in which case it provides a benefit.

Minimal traffic was assigned to the RIRO in the microsimulation network. From a traffic perspective, it is not critical to operations. Delay at US 127 study intersections is within 2 seconds for model runs of Build 3a with and without the RIRO.

Turning right out from the RIRO dumps motorists into the right-only lane onto Westridge Drive.

The biggest concern with the Landings RIRO would be drivers making the right out move then skipping three lanes to turn left onto Leonardwood Drive. The northbound US 127 flows are heaviest in the morning peak when development traffic is lower so maybe it's not a major concern. However, the RIRO is very close to the two gas station entrances, creating closely spaced access points with a high level of "driver workload" at certain times. If the RIRO remains, it should be shifted south to increase spacing and merge lengths to Leonardwood Drive.

MISC

The development should design their traffic patterns internally to enter and exit from the Westridge intersection. Another option could provide a new access from the development to KY 676.

This corresponds to the Build 1 scenario explored in the Tech Memo. The configuration works but puts Westridge Drive close to capacity, making it especially sensitive to trip generation/distribution assumptions. Build 3a could be combined with the backage road and improved Westridge as well to further distribute traffic, represented by Build 3c in the Tech Memo. With the developer already moving earth, improvements within the existing right-of-way were prioritized to minimize costs and implementation timelines.

Are the improvements east of US 127 assumed to be done by the developer as part of the access permit?

Representative connections were shown within the proposed development site, with the assumption that future coordination between the developer and KYTC would occur to find a mutually beneficial solution. The proposed roadway connections could advance as a public street but improvements within the proposed development site could be expected to occur more efficiently than improvements involving other private property owners.

Is the cost difference between the various Build 3 concepts different because of phasing assumptions?

The cost differences between the Build 3 concepts along US 127 and Westridge is due to variable pavement and median needs. The main differences derive from the various SB left turn lane configurations.